Abstract:
A semiconductor structure includes a GaN substrate having a first surface and a second surface opposing the first surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a first GaN epitaxial layer of the first conductivity type coupled to the second surface of the GaN substrate and a second GaN epitaxial layer of a second conductivity type coupled to the first GaN epitaxial layer. The second GaN epitaxial layer includes an active device region, a first junction termination region characterized by an implantation region having a first implantation profile, and a second junction termination region characterized by an implantation region having a second implantation profile.
Abstract:
A semiconductor device includes a III-nitride substrate and a first III-nitride epitaxial layer coupled to the III-nitride substrate and comprising a drift region, a channel region, and an extension region. The channel region is separated from the III-nitride substrate by the drift region. The channel region is characterized by a first width. The extension region is separated from the drift region by the channel region. The extension region is characterized by a second width less than the first width. The semiconductor device also includes a second III-nitride epitaxial layer coupled to a top surface of the extension region, a III-nitride gate structure coupled to a sidewall of the channel region and laterally self-aligned with respect to the extension region, and a gate metal structure in electrical contact with the III-nitride gate structure and laterally self-aligned with respect to the extension region.
Abstract:
The present disclosure discloses a lateral high-voltage transistor and associated method for making the same. The lateral high-voltage transistor comprises a semiconductor layer of a first conductivity type; a source region of a second conductivity type opposite to the first conductivity type in the semiconductor layer; a drain region of the second conductivity type in the semiconductor layer separated from the source region; a first isolation layer atop the semiconductor layer between the source region and the drain region; a first well region of the second conductivity type surrounding the drain region, extending towards the source region and separated from the source region; a second well region of the first conductivity type surrounding the source region; a gate positioned atop the first isolation layer above the second well region and an adjacent portion of the first well region; and a first buried layer of the first conductivity type under the first well region adjacent to the source region side of the lateral high-voltage transistor. A JFET is formed using the gate as a JFET top gate and the first buried layer as a JFET bottom gate.
Abstract:
An embodiment of a semiconductor device includes a gallium nitride (GaN) substrate having a first surface and a second surface. The second surface is substantially opposite the first surface, at least one device layer is coupled to the first surface, and a backside metal is coupled to the second surface. A top metal stack is coupled to the at least one device layer. The top metal stack includes a contact metal coupled to a surface of the at least one device layer, a protection layer coupled to the contact metal, a diffusion barrier coupled to the protection layer, and a pad metal coupled to the diffusion barrier. The semiconductor device is configured to conduct electricity between the top metal stack and the backside metal.
Abstract:
The present technology discloses a high-voltage device comprising a high-voltage transistor and an integrated over-voltage protection circuit. The over-voltage protection circuit monitors a voltage across the high-voltage transistor to detect an over-voltage condition of the high-voltage transistor, and turns the high-voltage transistor ON when the over-voltage condition is detected. Thus, once the high-voltage transistor is in over-voltage condition, the high-voltage transistor is turned ON and can dissipate the power from the over-voltage event through its channel.
Abstract:
An MOS transistor includes a doping profile that selectively increases the dopant concentration of the body region. The doping profile has a shallow portion that increases the dopant concentration of the body region just under the surface of the transistor under the gate, and a deep portion that increases the dopant concentration of the body region under the source and drain regions. The doping profile may be formed by implanting dopants through the gate, source region, and drain region. The dopants may be implanted in a high energy ion implant step through openings of a mask that is also used to perform another implant step. The dopants may also be implanted through openings of a dedicated mask.
Abstract:
A transistor is formed inside an isolation structure which includes a floor isolation region and a trench extending from the surface of the substrate to the floor isolation region. The trench may be filled with a dielectric material or may have a conductive material in a central portion with a dielectric layer lining the walls of the trench.
Abstract:
An example control element for use in a power supply includes a high-voltage transistor and a control circuit to control switching of the high-voltage transistor. The high-voltage transistor includes a drain region, source region, tap region, drift region, and tap drift region, all of a first conductivity type. The transistor also includes a body region of a second conductivity type. An insulated gate is included in the transistor such that when the insulated gate is biased a channel is formed across the body region to form a conduction path between the source region and the drift region. A voltage at the tap region with respect to the source region is substantially constant and less than a voltage at the drain region with respect to the source region in response to the voltage at the drain region exceeding a pinch off voltage.
Abstract:
A lateral high-voltage transistor comprising a semiconductor layer of a first conductivity type; a source region of a second conductivity type in the semiconductor layer; a drain region of the second conductivity type in the semiconductor layer; a first isolation layer atop the semiconductor layer between the source and the drain regions; a first well region of the second conductivity type surrounding the drain region; a gate positioned atop the first isolation layer adjacent to the source region; a spiral resistive field plate atop the first isolation layer spiraling between the drain region and the gate, wherein the spiral resistive field plate is coupled in series to the source and drain regions; and a buried layer of the first conductivity type in the first well region, wherein the buried layer is buried beneath a top surface of the first well region below the spiral resistive field plate.
Abstract:
The present disclosure discloses a lateral DMOS with recessed source contact and method for making the same. The lateral DMOS comprises a recessed source contact which has a portion recessed into a source region to reach a body region of the lateral DMOS. The lateral DMOS according to various embodiments of the present invention may have greatly reduced size and may be cost saving for fabrication.