Abstract:
Embodiments described herein relate generally to one or more methods for forming an interconnect structure, such as a dual damascene interconnect structure comprising a conductive line and a conductive via, and structures formed thereby. In some embodiments, an interconnect opening is formed through one or more dielectric layers over a semiconductor substrate. The interconnect opening has a via opening and a trench over the via opening. A conductive via is formed in the via opening. A nucleation enhancement treatment is performed on one or more exposed dielectric surfaces of the trench. A conductive line is formed in the trench on the one or more exposed dielectric surfaces of the trench and on the conductive via.
Abstract:
An embodiment method includes depositing a first dielectric film over and along sidewalls of a semiconductor fin, the semiconductor fin extending upwards from a semiconductor substrate. The method further includes depositing a dielectric material over the first dielectric film; recessing the first dielectric film below a top surface of the semiconductor fin to define a dummy fin, the dummy fin comprising an upper portion of the dielectric material; and forming a gate stack over and along sidewalls of the semiconductor fin and the dummy fin.
Abstract:
A method includes etching a low-k dielectric layer on a wafer to form an opening in the low-k dielectric layer. An amount of a detrimental substance in the wafer is measured to obtain a measurement result. Process conditions for baking the wafer are determined in response to the measurement result. The wafer is baked using the determined process conditions.
Abstract:
The present disclosure provides a method forming a semiconductor device in accordance with some embodiments. The method includes receiving a substrate having a fin protruding through the substrate, wherein the fin is formed of a first semiconductor material, exposing the substrate in an environment including hydrogen radicals, thereby passivating the protruded fin using the hydrogen radicals, and epitaxially growing a cap layer of a second semiconductor material to cover the protruded fin.
Abstract:
Methods and apparatus for a low k dielectric layer of porous SiCOH. A method includes placing a semiconductor substrate into a vapor deposition chamber; introducing reactive gases into the vapor deposition chamber to form a dielectric film comprising SiCOH and a decomposable porogen; depositing the dielectric film to have a ratio of Si—CH3 to SiOnetwork bonds of less than or equal to 0.25; and performing a cure for a cure time to remove substantially all of the porogen from the dielectric film. In one embodiment the porogen comprises a cyclic hydrocarbon. The porogen may be UV curable. In embodiments, different lowered Si—CH3 to SiOnetwork ratios for the deposition of the dielectric film are disclosed. An apparatus of a semiconductor device including the low k dielectric layers is disclosed.
Abstract:
A semiconductor structure includes a semiconductor substrate and an isolation structure disposed in the semiconductor substrate, wherein the isolation structure includes a first dielectric layer in contact with the semiconductor substrate and a second dielectric layer over the first dielectric layer, wherein the first dielectric layer is between the second dielectric layer and the semiconductor substrate, the first dielectric layer comprises a bottom portion and a sidewall portion, and a thickness of the bottom portion is greater than a thickness of the sidewall portion.
Abstract:
A carrier structure and methods of forming and using the same are described. In some embodiments, the method includes forming one or more devices over a substrate, forming a first interconnect structure over the one or more devices, and bonding the first interconnect structure to a carrier structure. The carrier structure includes a semiconductor substrate, a release layer, and a first dielectric layer, and the release layer includes a metal nitride. The method further includes flipping over the one or more devices so the carrier structure is located at a bottom, performing backside processes, flipping over the one or more devices so the carrier structure is located at a top, and exposing the carrier structure to IR lights. Portions of the release layer are separated from the first dielectric layer.
Abstract:
A semiconductor device structure and a formation method are provided. The method includes forming a sacrificial base layer over a substrate and forming a semiconductor stack over the sacrificial base layer. The semiconductor stack has multiple sacrificial layers and multiple semiconductor layers laid out alternately. The method also includes forming a gate stack to partially cover the sacrificial base layer, the semiconductor layers, and the sacrificial layers. The method further includes removing the sacrificial base layer to form a recess between the substrate and the semiconductor stack. In addition, the method includes forming a metal-containing dielectric structure to partially or completely fill the recess. The metal-containing dielectric structure has multiple sub-layers.
Abstract:
The present disclosure provides an interconnect structure, including a substrate having a conductive region adjacent to a gate region, a contact over the conductive region, a first interlayer dielectric layer (ILD) surrounding the contact, a via over the contact, a first densified dielectric layer surrounding the via, wherein the densified dielectric layer has a first density, and a second ILD layer over the first ILD layer and surrounding the via, wherein the second ILD layer has a second density, the first density is greater than a second density.
Abstract:
An embodiment method includes depositing a first dielectric film over and along sidewalls of a semiconductor fin, the semiconductor fin extending upwards from a semiconductor substrate. The method further includes depositing a dielectric material over the first dielectric film; recessing the first dielectric film below a top surface of the semiconductor fin to define a dummy fin, the dummy fin comprising an upper portion of the dielectric material; and forming a gate stack over and along sidewalls of the semiconductor fin and the dummy fin.