Abstract:
Provided is a semiconductor device including a substrate, first and second gate structures provided on the substrate, a source/drain region provided adjacent to the first gate structure, an interlayered insulating layer provided on the substrate to cover the source/drain region and the first and second gate structures, a source/drain contact hole penetrating the interlayered insulating layer and exposing the source/drain region, a trench formed in the interlayered insulating layer to expose a top surface of the second gate structure, a source/drain contact plug provided in the source/drain contact hole to be in contact with the source/drain region, and a resistor pattern provided in the trench to be in contact with a top surface of the second gate structure.
Abstract:
Methods of fabricating semiconductor devices are provided including providing a substrate having a first region and a second region, the substrate defining trenches in the first and second regions; forming active fins on the first and second regions, the active fins protruding from the trenches in the first and second regions; forming spacers on sidewalls of the active fins in the first and second regions; recessing floors of the trenches under the spacers to provide extensions of the active fins; implanting impurities of a first type in the extensions of the active fins in the first region; and implanting impurities of a second, type, different from the first type, in the extensions of the active fins in the second region.
Abstract:
A semiconductor device includes a first impurity region on a substrate; a channel pattern protruding from an upper surface of the substrate, the channel pattern extending in a first direction substantially parallel to the upper surface of the substrate; a second impurity region on the channel pattern, the second impurity region covering an entire upper surface of the channel pattern; a gate structure on a sidewall of the channel pattern and the substrate adjacent to the channel pattern; a first contact pattern on the second impurity region; a second contact pattern that is electrically connected to the gate structure; and a spacer between the first contact pattern and the second contact pattern. The spacer completely surrounds the second contact pattern in plan view, and the first contact pattern partially surrounds the second contact pattern in plan view.
Abstract:
A semiconductor device is disclosed. The semiconductor device includes a gate electrode on a substrate and extending in a first direction, source/drain patterns spaced apart from each other, in a second direction, with the gate electrode interposed therebetween, a gate contact electrically connected to the gate electrode, and an active contact electrically connected to at least one of the source/drain patterns. The active contact includes a lower contact pattern electrically connected to the at least one of the source/drain patterns, the lower contact pattern having a first width in the first direction, and an upper contact pattern electrically connected to a top surface of the lower contact pattern, the upper contact pattern having a second width in the first direction that is smaller than the first width. The upper contact pattern and the gate contact horizontally overlap each other.
Abstract:
A semiconductor device is disclosed. The semiconductor device includes a gate electrode on a substrate and extending in a first direction, source/drain patterns spaced apart from each other, in a second direction, with the gate electrode interposed therebetween, a gate contact electrically connected to the gate electrode, and an active contact electrically connected to at least one of the source/drain patterns. The active contact includes a lower contact pattern electrically connected to the at least one of the source/drain patterns, the lower contact pattern having a first width in the first direction, and an upper contact pattern electrically connected to a top surface of the lower contact pattern, the upper contact pattern having a second width in the first direction that is smaller than the first width. The upper contact pattern and the gate contact horizontally overlap each other.
Abstract:
A semiconductor device includes a first fin pattern and a second fin pattern in a NMOS region, each extending lengthwise along a first direction and separated by a first trench and a third fin pattern and a fourth fin pattern in a PMOS region, each extending lengthwise along the first direction in parallel with respective ones of the first fin pattern and the second fin pattern and separated by a second trench. First and second isolation layers are disposed in the first and second trenches, respectively. A first gate electrode extends lengthwise along a second direction transverse to the first direction and crosses the first fin pattern. A second gate electrode extends lengthwise along the second direction and crosses the second fin pattern. Spaced apart third and fourth gate electrodes extend lengthwise along the second direction on the second isolation layer.
Abstract:
Provided is a method of fabricating a semiconductor device. The method includes providing a substrate including a transistor area and a resistor area, forming dummy gate structures on the substrate in the resistor area, and a lower interlayer insulating layer; forming a resistor structure having a buffer insulating pattern, a resistor element and an etch-retard pattern disposed sequentially on the lower interlayer insulating layer; and forming resistor contact structures configured to pass through the etch-retard pattern and to contact with the resistor element.
Abstract:
Provided is a semiconductor device including a substrate, first and second gate structures provided on the substrate, a source/drain region provided adjacent to the first gate structure, an interlayered insulating layer provided on the substrate to cover the source/drain region and the first and second gate structures, a source/drain contact hole penetrating the interlayered insulating layer and exposing the source/drain region, a trench formed in the interlayered insulating layer to expose a top surface of the second gate structure, a source/drain contact plug provided in the source/drain contact hole to be in contact with the source/drain region, and a resistor pattern provided in the trench to be in contact with a top surface of the second gate structure.
Abstract:
Methods of fabricating semiconductor device are provided including forming first through third silicon crystalline layers on first through third surfaces of an active region; removing the first silicon crystalline layer to expose the first surface; forming a bit line stack on the exposed first surface; forming bit line sidewall spacers on both side surfaces of the bit line stack to be vertically aligned with portions of the second and third silicon crystalline layers of the active region; removing the second and third silicon crystalline layers disposed under the bit line sidewall spacers to expose the second and third surfaces of the active region; and forming storage contact plugs in contact with the second and third surfaces of the active region.