Abstract:
A memory device includes a magnetic tunnel junction (MTJ) bitcell. The MTJ bitcell includes a first MTJ and a second MTJ. The memory device further includes programming circuitry configured to generate a non-reversible state at the bitcell by applying a program signal to a selected one of the first MTJ and the second MTJ of the bitcell. The non-reversible state corresponds to a value of the MTJ bitcell that is determined by comparing a first value read at the first MTJ and a second value read at the second MTJ.
Abstract:
A one time programming (OTP) apparatus unit cell includes magnetic tunnel junctions (MTJs) with reversed connections for placing the MTJ in an anti-parallel resistance state during programming. Increased MTJ resistance in its anti-parallel resistance state causes a higher programming voltage which reduces programming time and programming current.
Abstract:
Aspects disclosed in the detailed description include write driver circuits for resistive random access memory (RAM) arrays. In one aspect, a write driver circuit is provided to facilitate writing data into a resistive RAM array in a memory system. The write driver circuit is coupled to a selector circuit configured to select a memory bitcell(s) in the resistive RAM array for a write operation. An isolation circuit is provided in the write driver circuit to couple a current source to the selector circuit to provide a write voltage during the write operation and to isolate the current source from the selector circuit when the selector circuit is not engaged in the write operation. By isolating the selector circuit from the current source when the selector circuit is on standby, it is possible to reduce leakage current in the selector circuit, thus reducing standby power consumption in the memory system.
Abstract:
Systems and methods for correcting bit failures in a resistive memory device include dividing the memory device into a first memory bank and a second memory bank. A first single bit repair (SBR) array is stored in the second memory bank, wherein the first SBR array is configured to store a first indication of a failure in a first failed bit in a first row of the first memory bank. The first memory bank and the first SBR array are configured to be accessed in parallel during a memory access operation. Similarly, a second SBR array stored in the first memory bank can store indications of failures of bits in the second memory bank, wherein the second SBR array and the second memory bank can be accessed in parallel. Thus, bit failures in the first and second memory banks can be corrected in real time.
Abstract:
A hybrid cache architecture uses magnetoresistive random-access memory (MRAM) caches but has two different types of bit cell sensing. One type of bit cell sensing is single-ended and the other type of bit cell sensing is differential. The result is a uniform bit cell array but a non-uniform sense amplifier configuration.
Abstract:
Aspects of the disclosure involve memory data scrubber circuits configured to perform memory data scrubbing operations in a processor-based memory to provide data error correction in response to periodic memory controller wake-up periods. Memory data scrubbing is performed to correct errors in data words stored in memory. Memory data scrubbing is initiated in the memory to conserve power in response to periodic memory controller wake-up periods during processor idle periods. Further, in certain aspects disclosed herein, the memory data scrubber circuit is provided as a separate system outside of the memory controller in the memory system. In this manner, power consumption can be further reduced, because the memory data scrubber circuit can continue with memory data scrubbing operations in the memory independent of the memory controller operation, and after the memory controller access commands issued during the wake-up period are completed and the memory controller is powered-down.
Abstract:
A method includes, at a resistive memory device, determining an average effective reference resistance level based on a first effective reference resistance and a second effective reference resistance. The first effective reference resistance is based on a first set of reference cells of the resistive memory device and the second effective reference resistance is based on a second set of reference cells of the resistive memory device. The method includes trimming a reference resistance at least partially based on the average effective reference resistance level. Trimming the reference resistance includes, in response to determining that the first effective reference resistance is not substantially equal to the average effective reference resistance level, modifying one or more states of one or more magnetic tunnel junction devices associated with the first effective reference resistance.
Abstract:
A method includes thinning a back-side of a substrate to expose a portion of a first via that is formed in the substrate. The method also includes forming a first diode at the back-side of the substrate. The first diode is coupled to the first via.
Abstract:
A circuit includes a plurality of transistors responsive to a plurality of latches that store a test code. The circuit further includes a first bit line coupled to a data cell and coupled to a sense amplifier. The circuit also includes a second bit line coupled to a reference cell and coupled to the sense amplifier. A current from a set of the plurality of transistors is applied to the data cell via the first bit line. The set of the plurality of transistors is determined based on the test code. The circuit also includes a test mode reference circuit coupled to the first bit line and to the second bit line.
Abstract:
A Spin-Transfer-Torque Magnetic Random Access Memory includes a dual-voltage row decoder with charge sharing for read operations. The dual-voltage row decoder with charge sharing for read operations reduces read-disturbance failure rates and provides a robust macro design with improved yields. Voltage from one of the power supplies can be applied during a write operation.