Abstract:
Methods of depositing low resistivity tungsten nucleation layers using alkyl borane reducing agents are described. Alkyl borane reducing agents utilized include compounds with the general formula BR3, where R is a C1-C6 alkyl group. Apparatus for performing atomic layer deposition of tungsten nucleation layers using alkyl borane reducing agents are also described.
Abstract:
Methods of forming a contact line comprising cleaning the surface of a cobalt film in a trench and forming a protective layer on the surface of the cobalt, the protective layer comprising one or more of a silicide or germide. Semiconductor devices with the contact lines are also disclosed.
Abstract:
Implementations described herein generally relate to methods and apparatus for in-situ removal of unwanted deposition buildup from one or more interior surfaces of a semiconductor substrate processing chamber. In one implementation, a method for removing cobalt or cobalt containing deposits from one or more interior surfaces of a substrate processing chamber after processing a substrate disposed in the substrate processing chamber is provided. The method comprises forming a reactive species from the fluorine containing cleaning gas mixture, permitting the reactive species to react with the cobalt and/or the cobalt containing deposits to form cobalt fluoride in a gaseous state and purging the cobalt fluoride in gaseous state out of the substrate processing chamber.
Abstract:
Methods for pre-cleaning substrates having metal and dielectric surfaces are described. The substrate is exposed to a strong reductant to remove contaminants from the metal surface and damage the dielectric surface. The substrate is then exposed to an oxidation process to repair the damage to the dielectric surface and oxidize the metal surface. The substrate is then exposed to a weak reductant to reduce the metal oxide to a pure metal surface without substantially affecting the dielectric surface. Processing tools and computer readable media for practicing the method are also described.
Abstract:
The present disclosure generally relates to methods for processing of substrates, and more particularly relates to methods for forming a metal gapfill. In one implementation, the method includes forming a metal gapfill in an opening using a multi-step process. The multi-step process includes forming a first portion of the metal gapfill, performing a sputter process to form one or more layers on one or more side walls, and growing a second portion of the metal gapfill to fill the opening with the metal gapfill. The metal gapfill formed by the multi-step process is seamless, and the one or more layers formed on the one or more side walls seal any gaps or defects between the metal gapfill and the side walls. As a result, fluids utilized in subsequent processes do not diffuse through the metal gapfill.
Abstract:
Methods for forming metal contacts having tungsten liner layers are provided herein. In some embodiments, a method of processing a substrate includes: exposing a substrate, within a first substrate process chamber, to a plasma formed from a first gas comprising a metal organic tungsten precursor gas or a fluorine-free tungsten halide precursor to deposit a tungsten liner layer, wherein the tungsten liner layer is deposited atop a dielectric layer and within a feature formed in a first surface of the dielectric layer of a substrate; transferring the substrate to a second substrate process chamber without exposing the substrate to atmosphere; and exposing the substrate to a second gas comprising a tungsten fluoride precursor to deposit a tungsten fill layer atop the tungsten liner layer.
Abstract:
Methods to selectively deposit a film on a first surface (e.g., a metal surface) relative to a second surface (e.g., a dielectric surface) by exposing the surface to a pre-clean plasma comprising one or more of argon or hydrogen followed by deposition. The first surface and the second surface can be substantially coplanar. The selectivity of the deposited film may be increased by an order of magnitude relative to the substrate before exposure to the pre-cleaning plasma.
Abstract:
A method for selectively controlling deposition rate of a catalytic material during a catalytic bulk CVD deposition is disclosed herein. The method can include positioning a substrate in a processing chamber including both surface regions and gap regions, depositing a first nucleation layer comprising tungsten conformally over an exposed surface of the substrate, treating at least a portion of the first nucleation layer with activated nitrogen, wherein the activated nitrogen is deposited preferentially on the surface regions, reacting a first deposition gas comprising tungsten halide and hydrogen-containing gas to deposit a tungsten fill layer preferentially in gap regions of the substrate, reacting a nucleation gas comprising a tungsten halide to form a second nucleation layer, and reacting a second deposition gas comprising tungsten halide and a hydrogen-containing gas to deposit a tungsten field layer.
Abstract:
A method of filling a feature in a substrate with tungsten without forming a seam is presented. The tungsten is deposited by a thermal chemical vapor deposition (CVD) process using hydrogen (H2) and tungsten hexafluoride (WF6) precursor gases. The H2 to WF6 flow rate ratio is greater than 40 to 1, such as from 40 to 1 to 100 to 1. The substrate temperature during deposition is less than 300 degrees Celsius (° C.) and the processing pressure during deposition is greater than 300 Torr.
Abstract:
Apparatus and methods to provide electronic devices comprising tungsten film stacks are provided. A tungsten liner formed by physical vapor deposition is filled with a tungsten film formed by chemical vapor deposition directly over the tungsten liner.