Abstract:
Methods for depositing ruthenium by a PECVD process are described herein. Methods for depositing ruthenium can include positioning a substrate in a processing chamber, the substrate having a barrier layer formed thereon, heating and maintaining the substrate at a first temperature, flowing a first deposition gas into a processing chamber, the first deposition gas comprising a ruthenium containing precursor, generating a plasma from the first deposition gas to deposit a first ruthenium layer over the barrier layer, flowing a second deposition gas into the processing chamber to deposit a second ruthenium layer over the first ruthenium layer, the second deposition gas comprising a ruthenium containing precursor, depositing a copper seed layer over the second ruthenium layer and annealing the substrate at a second temperature.
Abstract:
A method for selectively controlling deposition rate of a catalytic material during a catalytic bulk CVD deposition is disclosed herein. The method can include positioning a substrate in a processing chamber including both surface regions and gap regions, depositing a first nucleation layer comprising tungsten conformally over an exposed surface of the substrate, treating at least a portion of the first nucleation layer with activated nitrogen, wherein the activated nitrogen is deposited preferentially on the surface regions, reacting a first deposition gas comprising tungsten halide and hydrogen-containing gas to deposit a tungsten fill layer preferentially in gap regions of the substrate, reacting a nucleation gas comprising a tungsten halide to form a second nucleation layer, and reacting a second deposition gas comprising tungsten halide and a hydrogen-containing gas to deposit a tungsten field layer.
Abstract:
A method for selectively controlling deposition rate of a catalytic material during a catalytic bulk CVD deposition is disclosed herein. The method can include positioning a substrate in a processing chamber including both surface regions and gap regions, depositing a first nucleation layer comprising tungsten conformally over an exposed surface of the substrate, treating at least a portion of the first nucleation layer with activated nitrogen, wherein the activated nitrogen is deposited preferentially on the surface regions, reacting a first deposition gas comprising tungsten halide and hydrogen-containing gas to deposit a tungsten fill layer preferentially in gap regions of the substrate, reacting a nucleation gas comprising a tungsten halide to form a second nucleation layer, and reacting a second deposition gas comprising tungsten halide and a hydrogen-containing gas to deposit a tungsten field layer.
Abstract:
A method of filling a feature in a substrate with tungsten without forming a seam is presented. The tungsten is deposited by a thermal chemical vapor deposition (CVD) process using hydrogen (H2) and tungsten hexafluoride (WF6) precursor gases. The H2 to WF6 flow rate ratio is greater than 40 to 1, such as from 40 to 1 to 100 to 1. The substrate temperature during deposition is less than 300 degrees Celsius (° C.) and the processing pressure during deposition is greater than 300 Torr.
Abstract:
Methods for depositing ruthenium by a PECVD process are described herein. Methods for depositing ruthenium can include positioning a substrate in a processing chamber, the substrate having a barrier layer formed thereon, heating and maintaining the substrate at a first temperature, flowing a first deposition gas into a processing chamber, the first deposition gas comprising a ruthenium containing precursor, generating a plasma from the first deposition gas to deposit a first ruthenium layer over the barrier layer, flowing a second deposition gas into the processing chamber to deposit a second ruthenium layer over the first ruthenium layer, the second deposition gas comprising a ruthenium containing precursor, depositing a copper seed layer over the second ruthenium layer and annealing the substrate at a second temperature.