Abstract:
A multilayer ceramic electronic component includes a first organic layer located on both principal surfaces and both side surfaces in contact with a first external electrode, and a second organic layer located on the both principal surfaces and the both side surfaces in contact with a second external electrode. The first organic layer includes an organic silicon compound and covers an end of a first base electrode layer of the first external electrode, and the second organic layer includes an organic silicon compound and covers an end of a second base electrode layer of the second external electrode. A first plating layer of the first external electrode includes an end in contact with the surface of the first organic layer, and a second plating layer of the second external electrode includes an end in contact with the surface of the second organic layer.
Abstract:
The present invention relates generally to the fields of electrical engineering and electronics. More specifically, the present invention relates to passive components of electrical circuitry and more particularly to energy storage devices and method of production thereof.
Abstract:
A gate-all around fin double diffused metal oxide semiconductor (DMOS) devices and methods of manufacture are disclosed. The method includes forming a plurality of fin structures from a substrate. The method further includes forming a well of a first conductivity type and a second conductivity type within the substrate and corresponding fin structures of the plurality of fin structures. The method further includes forming a source contact on an exposed portion of a first fin structure. The method further comprises forming drain contacts on exposed portions of adjacent fin structures to the first fin structure. The method further includes forming a gate structure in a dielectric fill material about the first fin structure and extending over the well of the first conductivity type.
Abstract:
A gate-all around fin double diffused metal oxide semiconductor (DMOS) devices and methods of manufacture are disclosed. The method includes forming a plurality of fin structures from a substrate. The method further includes forming a well of a first conductivity type and a second conductivity type within the substrate and corresponding fin structures of the plurality of fin structures. The method further includes forming a source contact on an exposed portion of a first fin structure. The method further comprises forming drain contacts on exposed portions of adjacent fin structures to the first fin structure. The method further includes forming a gate structure in a dielectric fill material about the first fin structure and extending over the well of the first conductivity type.
Abstract:
The present invention provides novel tank circuits that are totally passive, and they are made of conductive-grade carbon nanotubes (CNTs) on substrates, and preferably flexible substrates. These components and structures contain no traditional electronic materials such as silicon, metal oxides, or ceramics, and they are totally organic. They may be used in applications where the resonant frequency and amplitude of the sensor can be modulated by a thermal, mechanical, or chemical signal, such as temperature, strain, pressure, vibration, or humidity. All-organic, and consequently combustible, passive RF sensors have unique applications for defense and consumer industries.
Abstract:
A composition includes a product of a condensation reaction between a thermal cross-linking agent and a product of hydrolysis and condensation polymerization of a compound represented by Chemical Formula 1: In Chemical Formula 1, the definitions of the substituents are the same as in the detailed description. Further, an electronic device and a thin film transistor include a cured material of the composition.
Abstract:
A method of forming a conductive portion in an insulating material. The insulating material includes carbon and at least one other constituent. The method includes exposing the insulating material to ions to preferentially remove the other constituent.
Abstract:
Prismatic polymer monolithic capacitor structure operating at temperatures exceeding 140° C. and including multiple interleaving radiation-cured polymer dielectric layers and metal layers. Method for fabrication of same. The geometry of structure is judiciously chosen to increase sheet resistance of metal electrodes while reducing the capacitor's equivalent series resistance. Metal electrode layers are provided with a thickened peripheral portion to increase strength of terminating connections and are passivated to increase corrosion resistance. Materials for polymer dielectric layers are devised to ensure that the capacitor's dissipation factor remains substantially unchanged across the whole range of operating temperatures, to procure glass transition temperature that is no less than the desired operating temperature, and to optimize the absorption of ambient moisture by the polymeric layers.
Abstract:
Systems and methods in accordance with embodiments of the invention implement micro- and nanoscale capacitors that incorporate a conductive element that conforms to the shape of an array elongated bodies. In one embodiment, a capacitor that incorporates a conductive element that conforms to the shape of an array of elongated bodies includes: a first conductive element that conforms to the shape of an array of elongated bodies; a second conductive element that conforms to the shape of an array of elongated bodies; and a dielectric material disposed in between the first conductive element and the second conductive element, and thereby physically separates them.
Abstract:
A stretched film includes a dispersion of at least one polyester and/or polycarbonate in a matrix of at least one polyester and/or polycarbonate different from the first polyester and/or polycarbonate, the percentage by weight of the dispersed polyester and/or polycarbonate in the dispersion being less than 50% and the dispersed polyester and/or polycarbonate being in the form of platelets. The stretched film can be used as a dielectric in a capacitor.