Abstract:
A system of measuring hemoglobin and bilirubin parameters in a whole blood sample using optical absorbance. The system includes an optical-sample module, a spectrometer module, an optical fiber module optically connecting the optical-sample module to the spectrometer module, and a processor module. The optical-sample module has a light-emitting module having a LED light source, a cuvette and a calibrating-light module. The processor module receives and processes an electrical signal from the spectrometer module and transforms the electrical signal into an output signal useable for displaying and reporting hemoglobin parameter values and/or total bilirubin parameter values for the whole blood sample.
Abstract:
A sensor for monitoring a medium has an electromagnetic radiation source, mirrors, and a detector for electromagnetic radiation arranged inside a cup-shaped housing part. The cup-shaped part has flat, angularly arranged wall areas defining a cavity in which, outside of the housing, the medium is contained. The flat wall areas are transparent for electromagnetic radiation and arranged in the beam path from the electromagnetic radiation source to the detector so that the electromagnetic radiation passes through first wall, medium in the cavity, and second wall. The first and second wall areas and the medium form a refracting prism. A cover closes off the cup-shaped part so that electromagnetic radiation source, detector, and mirrors are enclosed in the housing. A data processing system is connected to electromagnetic radiation source and detector so that electromagnetic radiation of different wavelengths is refracted in the prism and the resulting spectra are detected and evaluated.
Abstract:
Methods are provided to identify spatially and spectrally multiplexed probes in a biological environment. Such probes are identified by the ordering and color of fluorophores of the probes. The devices and methods provided facilitate determination of the locations and colors of such fluorophores, such that a probe can be identified. In some embodiments, probes are identified by applying light from a target environment to a spatial light modulator that can be used to control the direction and magnitude of chromatic dispersion of the detected light; multiple images of the target, corresponding to multiple different spatial light modulator settings, can be deconvolved and used to determine the colors and locations of fluorophores. In some embodiments, light from a region of the target can be simultaneously imaged spatially and spectrally. Correlations between the spatial and spectral images over time can be used to determine the color of fluorophores in the target.
Abstract:
Multispectral images, including ultraviolet light and its interactions with ultraviolet light-interactive compounds, can be captured, processed, and represented to a user. Ultraviolet-light related information can be conveniently provided to a user to allow the user to have awareness of UV characteristics and the user's risk to UV exposure.
Abstract:
A measurement system includes a wearable measurement device for measuring one or more physiological parameters, including a light source comprising a plurality of light emitting diodes (LEDs) configured to generate an output optical beam with a near-infrared wavelength between 700 nanometers and 2500 nanometers. The light source is configured to increase signal-to-noise ratio by increasing a light intensity and pulse rate of the LEDs. The system includes a plurality of lenses configured to receive the output optical beam and to deliver an analysis output beam to a sample. The wearable measurement device includes a receiver configured to process the analysis output beam reflected or transmitted from the sample and to generate an output signal that may be transmitted to a remote device configured to process the received output status to generate processed data and to store the processed data.
Abstract:
A method of measuring whole-blood hemoglobin parameters includes providing a LED light source, guiding light having the spectral range from the LED light source along an optical path, providing a cuvette module with a sample receiving chamber, providing a pair of first and second optical diffusers disposed in the optical path where the cuvette module is disposed between the pair of first and second optical diffusers, guiding light from the cuvette module into an optical spectrometer, and processing an electrical signal from the spectrometer into an output signal useable for displaying and reporting hemoglobin parameter values and/or total bilirubin parameter values of the sample of whole blood.
Abstract:
A method is described for estimating a spectral feature of a pulsed light beam produced by an optical source and directed toward a wafer of a lithography apparatus. The method includes receiving a set of N optical spectra of pulses of the light beam; saving the received N optical spectra to a saved set; transforming the optical spectra in the saved set to form a set of transformed optical spectra; averaging the transformed optical spectra to form an averaged spectrum; and estimating a spectral feature of the pulsed light beam based on the averaged spectrum.
Abstract:
The invention generally relates to methods for determining a concentration of at least one target analyte in a heterogeneous sample and methods for detecting a condition. In certain aspects, the inventions provides methods that involve illuminating a heterogeneous sample, such as a biological sample, including at least one target analyte with polychromatic light, receiving luminous data of the heterogeneous sample and the at least one target analyte with a detector without splitting the polychromatic light into individual wavelengths and generating spectral data therefrom. The spectral data is then converted into a concentration of the at least one target analyte in the biological sample by comparing the spectral data to a database comprising known spectra already associated with concentration levels.
Abstract:
Provided are inexpensive devices and methods for obtaining emission or scattering spectra of multiple particles simultaneously and for characterizing the particles based on their emission or scattering spectra. The disclosed devices and methods are useful for analyzing multiple particles to determine one or more characteristics of the particles, such as size, type, elastic scattering, fluorescence and/or Raman characteristics, for distinguishing between biological and non-biological particles, and for biomedical assaying applications. Laboratory or research grade spectroscopic devices are described. Smartphone-based spectroscopic devices are also described, where various components of a smartphone are used for data collection and analysis purposes.
Abstract:
A method is described for estimating a spectral feature of a pulsed light beam produced by an optical source and directed toward a wafer of a lithography apparatus. The method includes receiving a set of N optical spectra of pulses of the light beam; saving the received N optical spectra to a saved set; transforming the optical spectra in the saved set to form a set of transformed optical spectra; averaging the transformed optical spectra to form an averaged spectrum; and estimating a spectral feature of the pulsed light beam based on the averaged spectrum.