Abstract:
Disclosed is a method of monitoring a lithographic process parameter, such as focus and/or dose, of a lithographic process. The method comprises acquiring a first and a second target measurement using respectively a first measurement configuration and a second measurement configuration, and determining the lithographic process parameter from a first metric derived from said first target measurement and said second target measurement. The first metric may be difference. Also disclosed are corresponding measurement and lithographic apparatuses, a computer program and a method of manufacturing devices.
Abstract:
A method is described for estimating a spectral feature of a pulsed light beam produced by an optical source and directed toward a wafer of a lithography apparatus. The method includes receiving a set of N optical spectra of pulses of the light beam; saving the received N optical spectra to a saved set; transforming the optical spectra in the saved set to form a set of transformed optical spectra; averaging the transformed optical spectra to form an averaged spectrum; and estimating a spectral feature of the pulsed light beam based on the averaged spectrum.
Abstract:
An alignment correction method includes: the step of detecting coordinates of a first observation point 14 and a second observation point 15 set in advance on a substrate to be exposed 1 that is being scanned in a scanning direction A, in order to observe an alignment deviation of the substrate to be exposed 1; the step of computing a correction amount based on a deviation between the detected coordinates and a reference line set in advance according to the first observation point 14 and the second observation point 15; and the step of correcting alignment of a subsequent substrate to be exposed 1 based on the computed correction amount.
Abstract:
A method includes directing a beam of radiation along an optical axis toward a workpiece support, measuring a spectrum of the beam at a first time to obtain a first profile, measuring the spectrum of the beam at a second time to obtain a second profile, determining a spectral difference between the two profiles, and adjusting a position of the workpiece support along the optical axis based on the difference. A different aspect involves an apparatus having a workpiece support, beam directing structure that directs a beam of radiation along an optical axis toward the workpiece support, spectrum measuring structure that measures a spectrum of the beam at first and second times to obtain respective first and second profiles, processing structure that determines a difference between the two profiles, and support adjusting structure that adjusts a position of the workpiece support along the optical axis based on the difference.
Abstract:
An exposure system includes a light source emitting a beam along an optical axis that is capable of inducing a multi-photon reaction in a resin. The exposure system further includes a resin undergoing multiphoton reaction, as well as an automated system including a monitor that measures at least one property of the beam selected from power, pulse length, shape, divergence, or position in a plane normal to the optical axis. The monitor generates at least one signal indicative of the property of the beam, and a sub-system adjusts the beam in response to the signal from the monitor.
Abstract:
A defocus calibration module is applied in a light-sensing system for sensing a measured object to generate a sensed image. The light-sensing system contains a light-emitting component, a focusing component, and an image sensor. The light-emitting component emits a detecting light to the measured object so that the measured object generates a reflecting light. The focusing component focuses the reflecting light to the image sensor, and the image sensor generates the sensed image according to the reflecting light. The defocus calibration module has a calibrating object for blocking a part of the detecting light and the reflecting light for forming images at a first and a second calibration imaging locations in the sensed image. In this way, the defocus calibration module calculates a defocus parameter representing the defocus level of the light-sensing system according to the first and the second calibration imaging locations, and accordingly calibrates the sensed image.
Abstract:
A method includes directing a beam of radiation along an optical axis toward a workpiece support, measuring a spectrum of the beam at a first time to obtain a first profile, measuring the spectrum of the beam at a second time to obtain a second profile, determining a spectral difference between the two profiles, and adjusting a position of the workpiece support along the optical axis based on the difference. A different aspect involves an apparatus having a workpiece support, beam directing structure that directs a beam of radiation along an optical axis toward the workpiece support, spectrum measuring structure that measures a spectrum of the beam at first and second times to obtain respective first and second profiles, processing structure that determines a difference between the two profiles, and support adjusting structure that adjusts a position of the workpiece support along the optical axis based on the difference.
Abstract:
A part of exposure beam through a liquid(LQ) via a projection optical system(PL) enters a light-transmitting section(44), enters an optical member(41) without passing through gas, and is focused. The exposure apparatus receives the exposure light from the projection optical system to perform various measurements even if the numerical aperture of the projection optical system increases.
Abstract:
The disclosure relates to microlithography systems, such as EUV microlithography illumination systems, as well as related components, systems and methods.
Abstract:
An exposure apparatus which illuminates a reticle with illumination light from a light source and projects light from the reticle onto a substrate to expose the substrate to light is disclosed. The apparatus comprises a shutter located on a path of the illumination light, a detector configured to detect a dose to the substrate, and a controller configured to control operation of the shutter. In a first exposure mode which uses illumination light with a first light intensity, the controller controls an open time of the shutter based on an output from the detector, and to store the open time. In a second exposure mode which uses illumination light with a second light intensity higher than the first light intensity, the controller controls a speed of the shutter based on the stored open time.