Abstract:
A display device includes a substrate including a display area in which a plurality of pixels is disposed, and a non-display area in a peripheral area of the display area; an insulating layer disposed on the substrate; a metal wiring disposed on the substrate; and a plurality of dummy patterns disposed in the non-display area of the substrate. The plurality of dummy patterns includes a plurality of first patterns including an insulating material and a plurality of second patterns including a metal material.
Abstract:
An organic light emitting diode (OLED) display device and a method of fabricating the same are provided. The OLED display device includes a substrate having a thin film transistor region and a capacitor region, a buffer layer disposed on the substrate, a gate insulating layer disposed on the substrate, a lower capacitor electrode disposed on the gate insulating layer in the capacitor region, an interlayer insulating layer disposed on the substrate, and an upper capacitor electrode disposed on the interlayer insulating layer and facing the lower capacitor electrode, wherein regions of each of the buffer layer, the gate insulating layer, the interlayer insulating layer, the lower capacitor electrode, and the upper capacitor electrode have surfaces in which protrusions having the same shape as grain boundaries of the semiconductor layer are formed. The resultant capacitor has an increased surface area, and therefore, an increased capacitance.
Abstract:
A display device includes a substrate; a display area and a non-display area on the substrate, where a plurality of pixels is disposed in the display area, and where the non-display area is in a peripheral area of the display area; an insulating layer disposed on the substrate; a metal wiring disposed on the substrate; and a plurality of dummy patterns disposed in the non-display area. The plurality of dummy patterns includes a plurality of first patterns including an insulating material and a plurality of second patterns including a metal material.
Abstract:
A manufacturing method of a display device includes providing a first organic layer in a display area and a non-display area, to cover a pixel electrode and a pad electrode, respectively, providing a first electrode of a light emitting element, in the display area, the first organic layer being between the pixel electrode and the first electrode, after forming the first electrode, removing a portion of the first organic layer which is in the non-display area, to expose the pad electrode from the first organic layer; and providing a light emitting layer of the light emitting element, corresponding to the first electrode.
Abstract:
A display device includes a display panel including a hole area, a display area around the hole area, and a non-display area around the display area, a first-first insulating layer disposed in the hole area, sensing electrodes disposed on the display area, a crack detection pattern disposed on the first-first insulating layer in the hole area, a crack detection line disposed on the non-display area, and a connection pattern disposed in a first sensing electrode of the sensing electrodes disposed on the display area to be insulated from the sensing electrodes, and connected to the crack detection pattern and the crack detection line, the first sensing electrode being disposed between the hole area and the non-display area. An edge of the first-first insulating layer disposed at a boundary between the display area and the hole area has a step structure of at least two steps.
Abstract:
A flexible display device including: a display substrate having a display area and a peripheral area surrounding the display area; a plurality of pixels formed in the display area; a passivation layer covering the pixels from the top to protect the pixels; a polarization film layer provided at the top of the passivation layer and of which an edge is extended outside an edge of the passivation layer; and a film wiring made of a flexible material of which one end is connected to the peripheral area.
Abstract:
A display device includes a substrate including a display area in which a plurality of pixels is disposed, and a non-display area near the display area; an insulating layer disposed on the substrate; a metal wiring disposed on the substrate; and a plurality of dummy patterns disposed in the non-display area of the substrate. The plurality of dummy patterns includes a plurality of first patterns including an insulating material and a plurality of second patterns including a metal material.
Abstract:
A method of forming a polycrystalline silicon layer includes forming a first amorphous silicon layer and forming a second amorphous silicon layer such that the first amorphous silicon layer and the second amorphous silicon layer have different film qualities from each other, and crystallizing the first amorphous silicon layer and the second amorphous silicon layer using a metal catalyst to form a first polycrystalline silicon layer and a second polycrystalline silicon layer. A thin film transistor includes the polycrystalline silicon layer formed by the method and an organic light emitting device includes the thin film transistor.
Abstract:
A display device includes a substrate, a passivation layer on the substrate and including an area having a first thickness and an area having a second thickness less than the first thickness, a first electrode on the passivation layer and including at least two sub-electrodes spaced apart from each other by a slit having two ends, a light emitting layer on the first electrode, and a second electrode on the light emitting layer. Both ends of the slit are in one the area of the passivation layer having the second thickness.
Abstract:
A display device including: a substrate; a first semiconductor layer disposed on the substrate; a second semiconductor layer disposed on the substrate and adjacent to the first semiconductor layer; a first insulation layer disposed on both the first semiconductor layer and the second semiconductor layer, the first insulation layer including a first opening forming a space between the first semiconductor layer and the second semiconductor layer; and a second insulation layer disposed on the first insulation layer and that fills the first opening.