Abstract:
One feature pertains to a multi-chip module that comprises at least a first integrated circuit (IC) die and a second IC die. The second IC die has an input/output (I/O) node electrically coupled to the first IC die by a through substrate via. The second die's active surface also includes a fuse that is electrically coupled to the I/O node and adapted to protect the second IC die from damage caused by an electrostatic discharge (ESD). In particular, the fuse protects the second IC die from ESD that may be generated as a result of electrically coupling the first die to the second die during the manufacturing of the multi-chip module. Upon coupling the first die to the second die, the fuse may bypass the ESD current generated by the ESD to ground. After packaging of the multi-chip module is complete, the fuse may be blown open.
Abstract:
An ESD protection circuit has a driver transistor with a drain that is coupled to an I/O pad of an IC device and a source that is coupled to a first rail of a power supply in the IC device, and a diode that couples the I/O pad to the first rail and that is configured to be reverse-biased when a rated voltage is applied to the I/O pad. The rated voltage lies within a nominal operating range for voltage levels defined for the input/output pad. The ESD protection circuit has a gate pull transistor that couples a gate of the driver transistor to the I/O pad or the first rail. The gate pull transistor may be configured to present a high impedance path between the gate of the driver transistor and the I/O pad or the first rail when the rated voltage is applied to the I/O pad. The gate pull transistor may be configured to provide a low impedance path between the gate of the driver transistor and the I/O pad or the first rail when an overvoltage signal applied to the I/O pad has a magnitude that exceeds the nominal operating range of voltage levels defined for the I/O pad.
Abstract:
Circuits and methods for loopback testing are provided. A die incorporates a receiver (RX) to each transmitter (TX) as well as a TX to each RX. This architecture is applied to each bit so, e.g., a die that transmits or receives 32 data bits during operation would have 32 transceivers (one for each bit). Focusing on one of the transceivers, a loopback architecture includes a TX data path and an RX data path that are coupled to each other through an external contact, such as a via at the transceiver. The die further includes a transmit clock tree feeding the TX data path and a receive clock tree feeding the RX data path. The transmit clock tree feeds the receive clock tree through a conductive clock node that is exposed on a surface of the die. Some systems further include a variable delay in the clock path.
Abstract:
A latch-based power-on checker (POC) circuit for mitigating potential problems arising from an improper power-up sequence between different power domains (e.g., core and input/output (I/O)) on a system-on-chip (SoC) integrated circuit (IC). In one example, the core power domain having a first voltage (CX) should power up before the I/O power domain having a second voltage (PX), where PX>CX. If PX ramps up before CX, the POC circuit produces a signal indicating an improper power-up sequence, which causes the I/O pads to be placed in a known state. After CX subsequently ramps up, the POC circuit returns to a passive (LOW) state. If CX should subsequently collapse while PX is still up, the POC circuit remains LOW until PX also collapses.
Abstract:
A back-power prevention circuit is provided that protects a buffer transistor from back-power during a back-power condition by charging a signal lead coupled to a gate of the buffer transistor to a pad voltage and by charging a body of the buffer transistor to the pad voltage.
Abstract:
Circuits and methods for loopback testing are provided. A die incorporates a receiver (RX) to each transmitter (TX) as well as a TX to each RX. This architecture is applied to each bit so, e.g., a die that transmits or receives 32 data bits during operation would have 32 transceivers (one for each bit). Focusing on one of the transceivers, a loopback architecture includes a TX data path and an RX data path that are coupled to each other through an external contact, such as a via at the transceiver. The die further includes a transmit clock tree feeding the TX data path and a receive clock tree feeding the RX data path. The transmit clock tree feeds the receive clock tree through a conductive clock node that is exposed on a surface of the die. Some systems further include a variable delay in the clock path.
Abstract:
An input receiver for stepping down a high-voltage domain input signal into a low-voltage-domain stepped-down signal includes a waveform chopper. The waveform chopper chops the high-voltage domain input signal into a first chopped signal and a second chopped signal. A high-voltage-domain receiver combines the first chopped signal and the second chopped signal into a high-voltage-domain combined signal. A step-down device converts the high-voltage-domain combined signal into a stepped-down low-voltage-domain signal.
Abstract:
In a particular embodiment, a circuit includes a power supply, a ground, and a clamping transistor circuit coupled to the power supply and to the ground. The circuit further includes a disable clamp circuit. The disable clamp circuit is coupled to the power supply and is responsive to a second power supply input to selectively disable the clamping transistor circuit by modifying a charging current applied to a capacitor of the clamping transistor circuit. In a particular embodiment, modifying the charging current includes enabling a second charging path. Enabling the second charging path enables charging the capacitor at a higher charging rate than a charging rate associated with charging the capacitor via a first charging path.
Abstract:
In a particular embodiment, a circuit includes a power supply, a ground, and a clamping transistor circuit coupled to the power supply and to the ground. The circuit further includes a disable clamp circuit. The disable clamp circuit is coupled to the power supply and is responsive to a second power supply input to selectively disable the clamping transistor circuit by modifying a charging current applied to a capacitor of the clamping transistor circuit. In a particular embodiment, modifying the charging current includes enabling a second charging path. Enabling the second charging path enables charging the capacitor at a higher charging rate than a charging rate associated with charging the capacitor via a first charging path.
Abstract:
An input/output (I/O) driver is disclosed that employs a compensation circuit to limit the voltages across devices of the driver from exceeding a defined threshold to allow lower voltage devices to implement the operation of the driver. In particular, the driver employs a pull-up circuit including first and second switching devices coupled between a first voltage rail and an output of the driver. The driver employs a pull-down circuit including third and fourth switching devices coupled between the output and a second voltage rail. The I/O driver employs a compensation circuit configured to apply a compensation voltage to the node between the first and second switching devices and to the node between the third and fourth switching devices at the appropriate times to maintain the respective voltages across the second and third switching devices at or below a defined threshold, such as a reliability limit, during the operation of the driver.
Abstract translation:公开了一种输入/输出(I / O)驱动器,其采用补偿电路来限制驱动器的器件之间的电压超过限定的阈值,以允许较低电压的器件实现驱动器的操作。 特别地,驱动器采用包括耦合在第一电压轨和驱动器的输出之间的第一和第二开关器件的上拉电路。 驱动器采用包括耦合在输出端和第二电压轨道之间的第三和第四开关器件的下拉电路。 I / O驱动器采用补偿电路,其被配置为在适当的时间向第一和第二开关器件之间的节点和第三和第四开关器件之间的节点施加补偿电压,以保持跨越第二和第三开关器件的相应电压 在驾驶员的操作期间,切换设备处于或低于定义的阈值,例如可靠性限制。