摘要:
A back-power prevention circuit is provided that protects a buffer transistor from back-power during a back-power condition by charging a signal lead coupled to a gate of the buffer transistor to a pad voltage and by charging a body of the buffer transistor to the pad voltage.
摘要:
An intelligent power switch (IPS) circuit providing current protection for a power switch, a gate terminal of the power switch being controlled by a first control signal generated by a gate driver. The IPS circuit includes a first circuit to measure a current in the power switch, determine a first difference between a first voltage and a first reference voltage, and reduce the first control signal if the first difference exceeds a first predetermined limit; and a second circuit to measure the current in the power switch and determine a second difference between the first voltage and a second reference voltage, wherein if the second difference exceeds a second predetermined limit the first control signal is set to turn OFF the power switch.
摘要:
A drive circuit has a level shift circuit which outputs level-shifted on and off signals each for controlling a power semiconductor element in an on or off state, a first RS flip flop which is supplied with the on signal through a setting input terminal and supplied with the off signal through a resetting input terminal, and which outputs a drive signal to the power semiconductor element, and a logic filter circuit which is provided between the level shift circuit and the first RS flip flop, and which blocks transmission of the on and off signals during the time period from a time at which both the on and off signals become a first logic to a time at which both the on and off signal become a second logic.
摘要:
An electronic timer switch capable of controlling the operation of a unit, such as an air conditioning apparatus, according to a preset time schedule even when the unit is switched on.
摘要:
A semiconductor switch control device includes a bidirectional shutoff circuit that transmits or shuts off a current flowing bidirectionally between a high-voltage battery and a high-voltage load, a resistor that detects a voltage of the bidirectional shutoff circuit, a first voltage detector that detects a voltage applied to the resistor, and a controller configured to determine malfunction of the bidirectional shutoff circuit, based on a first detected voltage detected by the first voltage detector. The bidirectional shutoff circuit includes a first FET and a second FET including respective source terminals connected in series, and a third FET and a fourth FET including respective source terminals connected in series. The resistor includes one end connected between the source terminals of the first FET and the second FET, and the other end connected between the source terminals of the third FET and the fourth FET.
摘要:
A half bridge GaN circuit is disclosed. The circuit includes a low side circuit, which has a low side switch, a low side switch driver configured to drive the low side switch, a first level shift circuit configured to receive a first level shift signal, and a second level shift circuit configured to generate a second level shift signal. The half bridge GaN circuit also includes a high side circuit, which has a high side switch configured to be selectively conductive according to a voltage level of a received high side switch signal, and a high side switch driver configured to generate the high side switch signal in response to the level shift signals. A transition in the voltage of the high side switch signal causes the high side switch driver to prevent additional transitions of the voltage level of the high side switch signal for a period of time.
摘要:
A communication method includes detecting at a gate drive unit a change of state of a command signal that is received via a command link of the gate drive unit and initiating, responsive to the change of state of the command signal, a blanking period in which the gate drive unit will process as incoming data any further changes of state of the command signal. The method also includes receiving incoming data at the gate drive unit, by processing modulations of the command signal, within the blanking period.
摘要:
A discharge device actively discharges a main capacitor in an electric-power system of an electric-drive vehicle and comprises a discharge branch of a circuit connected in parallel to the capacitor and including a discharge transistor biased to “conduction” mode when the capacitor must be discharged. A control device is connected to a “gate/base” terminal of and controls the transistor, biasing the transistor to the mode when the capacitor is required to fee discharged. A control transistor maintains the discharge transistor in a “non-conductive” state when the control transistor is in the mode. The control transistor is in the state for the discharge transistor to be in the mode. A safety capacitor is interposed between the terminal and a power supply and charges when the discharge transistor is in the mode, causing a progressive decrease of current at the terminal, until the discharge transistor is biased to the state.
摘要:
The present invention provides a driving circuit. It includes a plurality of current mirrors to generate a first charge current and a second charge current in response to a reference current. A switch circuit generates a driving signal in response to an input signal. A driving switch is coupled between the first charge current and the switch circuit. Once the driving switch is turned on and the level of the input signal is in high level, the switch circuit generates the driving signal, the level of the driving signal-being in high level, in response to the first charge current and the second charge current. A detection circuit generates a control signal to turn on/off the driving switch. The detection circuit turns off the driving switch to disable the first charge current after a period of delay time when the level of the driving signal is in high level.