Abstract:
Some novel features pertain to an integrated device that includes a substrate, several lower level metal layers, several lower level dielectric layers, and a redistribution portion. The redistribution portion includes a first dielectric layer that includes a first dielectric thickness, and an electromagnetic (EM) passive device that includes a first redistribution interconnect. The first redistribution interconnect includes a first redistribution thickness, where the first dielectric thickness is at least about 2 times greater than the first redistribution thickness. In some implementations, the redistribution portion includes a radio frequency (RF) shield. In some implementations, the RF shield is located between a passivation layer and the several lower level dielectric layers. The RF shield is located between the EM passive device and the several lower level dielectric layers. The RF shield is electrically coupled to an interconnect configured to provide an electrical path for a ground signal.
Abstract:
Integrated devices include a substrate, and a capacitor embedded within the substrate. The capacitor is configured to include a first electrode disposed on a first surface, a second electrode disposed on an opposing second surface, and a plurality of capacitor plates extending transverse between the first electrode and the second electrode. Each capacitor plate is electrically coupled to one of the first electrode or the second electrode. A plurality of vias are positioned to extend through the substrate to one of the first electrode or the second electrode. Other aspects, embodiments, and features are also included.
Abstract:
Some novel features pertain to an integrated device that includes a substrate, a first cavity through the substrate, and a toroid inductor configured around the first cavity of the substrate. The toroid inductor includes a set of windings configured around the first cavity. The set of windings includes a first set of interconnects on a first surface of the substrate, a set of though substrate vias (TSVs), and a second set of interconnects on a second surface of the substrate. The first set of interconnects is coupled to the second set of interconnects through the set TSVs. In some implementations, the integrated device further includes an interconnect material (e.g., solder ball) located within the first cavity. The interconnect material is configured to couple a die to a printed circuit board. In some implementations, the interconnect material is part of the toroid inductor.
Abstract:
A planar capacitor includes, in part, a first metal line forming spiral-shaped loops around one of its end point, and a second metal line forming spiral-shaped loops between the loops of the first metal line. The first and second metal lines are coplanar, formed on an insulating layer, and form the first and second plates of the planar capacitor. The planar capacitor may be used to form a filter. Such a filter includes a first metal line forming first spiral-shaped loops, a second metal line forming second spiral-shaped loops, and a third metal line—coplanar with the first and second metal lines—forming loops between the loops of the first and second metal lines. The filter further includes a first inductor coupled between the first and third metal lines, and a second inductor coupled between the second and third metal lines.
Abstract:
Some features pertain to a package substrate that includes at least one dielectric layer, an inductor in the at least one dielectric layer, a first terminal coupled to the inductor, a second terminal coupled to the inductor, and a third terminal coupled to the inductor. The first terminal is configured to be a first port for the inductor. The second terminal is configured to be a second port for the inductor. The third terminal is a dummy terminal. In some implementations, the package substrate includes a solder resist layer over the dielectric layer, where the solder resist layer covers the third terminal. In some implementations, the package substrate includes a solder interconnect over the third terminal, such that the solder resist layer is between the third terminal and the solder interconnect. In some implementations, the package substrate is coupled to a die comprising a plurality of switches.
Abstract:
An integrated circuit device that includes a package substrate and a die coupled to the package substrate. The package substrate includes at least one dielectric layer, a first stack of first interconnects in the at least one dielectric layer, and a second interconnect formed on at least one side portion of the at least one dielectric layer. The first stack of first interconnects is configured to provide a first electrical path for a non-ground reference signal, where the first stack of first interconnects is located along at least one side of the package substrate. The second interconnect is configured to provide a second electrical path for a ground reference signal.
Abstract:
A package substrate that includes a first portion and a redistribution portion. The first portion is configured to operate as a capacitor. The first portion includes a first dielectric layer, a first set of metal layers in the dielectric layer, a first via in the dielectric layer, a second set of metal layers in the dielectric layer, and a second via in the dielectric layer. The first via is coupled to the first set of metal layers. The first via and the first set of metal layers are configured to provide a first electrical path for a ground signal. The second via is coupled to the second set of metal layers. The second via and the second set of metal layers are configured to provide a second electrical path for a power signal. The redistribution portion includes a second dielectric layer, and a set of interconnects.
Abstract:
An embedded multi-terminal capacitor embedded in a substrate cavity includes at least one metal layer patterned into a plurality of power rails and a plurality of ground rails. The substrate includes an external power network.
Abstract:
Provided herein is an integrated device that includes a substrate, a die, a heat-dissipation layer located between the substrate and the die, and a first interconnect configured to couple the die to the heat-dissipation layer. The heat-dissipation layer may be configured to provide an electrical path for a ground signal. The first interconnect may be further configured to conduct heat from the die to the heat-dissipation layer. The integrated device may also include a second interconnect configured to couple the die to the substrate. The second interconnect may be further configured to conduct a power signal between the die and the substrate. The integrated device may also include a dielectric layer located between the heat-dissipation layer and the substrate, and a solder-resist layer located between the die and the heat-dissipation layer.
Abstract:
Some implementations provide an integrated device that includes a capacitor and an inductor. The inductor is electrically coupled to the capacitor. The inductor and the capacitor are configured to operate as a filter for an electrical signal in the integrated device. The inductor includes a first metal layer of a printed circuit board (PCB), a set of solder balls coupled to the PCB, and a second metal layer in a die. In some implementations, the capacitor is located in the die. In some implementations, the capacitor is a surface mounted passive device on the PCB. In some implementations, the first metal layer is a trace on the PCB. In some implementations, the inductor includes a third metal layer in the die. In some implementations, the second metal layer is an under bump metallization (UBM) layer of the die, and the third metal is a redistribution layer of the die.