Abstract:
A magnetic tunnel junction (MTJ) device in a magnetoresistive random access memory (MRAM) and method of making the same are provided to achieve a high tunneling magnetoresistance (TMR), a high perpendicular magnetic anisotropy (PMA), good data retention, and a high level of thermal stability. The MTJ device includes a first free ferromagnetic layer, a synthetic antiferromagnetic (SAF) coupling layer, and a second free ferromagnetic layer, where the first and second free ferromagnetic layers have opposite magnetic moments.
Abstract:
An apparatus includes a first magnetic tunnel junction (MTJ) device of a differential MTJ pair. The apparatus further includes a second MTJ device of the differential MTJ pair. The first MTJ device includes a sense layer having a high coercivity portion.
Abstract:
An apparatus includes a multiple time programmable (MTP) memory device. The MTP memory device includes a metal gate, a substrate material, and an oxide structure between the metal gate and the substrate material. The oxide structure includes a hafnium oxide layer and a silicon dioxide layer. The hafnium oxide layer is in contact with the metal gate and in contact with the silicon dioxide layer. The silicon dioxide layer is in contact with the substrate material. The MTP device includes a transistor, and a non-volatile state of the MTP memory device is based on a threshold voltage of the transistor.
Abstract:
Systems and methods relate to providing a constant sensing current for reading a resistive memory element. A load voltage generator provides a load voltage based on a current mirror configured to supply a constant current that is invariant with process-voltage-temperature variations. A data voltage is generated based on the generated load voltage, by passing a sensing current mirrored from the constant current, through the resistive memory element. A reference voltage is generated, also based on the generated load voltage and by passing reference current mirrored from the constant current, through reference cells. A logical value stored in the resistive memory element is determined based on a comparison of the data voltage and the reference voltage, where the determination is free from effects of process-voltage-temperature variations.
Abstract:
A memory device may comprise a magnetic tunnel junction (MTJ) stack, a bottom electrode (BE) layer, and a contact layer. The MTJ stack may include a free layer, a barrier, and a pinned layer. The BE layer may be coupled to the MTJ stack, and encapsulated in a planarized layer. The BE layer may also have a substantial common axis with the MTJ stack. The contact layer may be embedded in the BE layer, and form an interface between the BE layer and the MTJ stack.
Abstract:
A magnetoresistive random access memory (MRAM) device includes a top electrode or top contact above a metal hard mask which has a limited height due to process limitations in advanced nodes. The metal hard mask is provided on a magnetic tunnel junction (MTJ). The top contact for the MTJ is formed within a dielectric layer, such as a low dielectric constant (low-k) or extremely low-k layer. An additional dielectric layer is provided above the top contact for additional connections for additional circuitry to form a three-dimensional integrated circuit (3D IC).
Abstract:
A magnetic tunnel junction (MTJ) device in a magnetoresistive random access memory (MRAM) and method of making the same are provided to achieve a high tunneling magnetoresistance (TMR), a high perpendicular magnetic anisotropy (PMA), good data retention, and a high level of thermal stability. The MTJ device includes a first free ferromagnetic layer, a synthetic antiferromagnetic (SAF) coupling layer, and a second free ferromagnetic layer, where the first and second free ferromagnetic layers have opposite magnetic moments.
Abstract:
An apparatus includes a multiple time programmable (MTP) memory device. The MTP memory device includes a metal gate, a substrate material, and an oxide structure between the metal gate and the substrate material. The oxide structure includes a hafnium oxide layer and a silicon dioxide layer. The hafnium oxide layer is in contact with the metal gate and in contact with the silicon dioxide layer. The silicon dioxide layer is in contact with the substrate material. The MTP device includes a transistor, and a non-volatile state of the MTP memory device is based on a threshold voltage of the transistor.
Abstract:
A resistance-based memory includes a two-diode access device. In a particular embodiment, a method includes biasing a bit line with a first voltage. The method further includes biasing the sense line with a second voltage. Biasing the bit line and biasing the sense line generates a current through a resistance-based memory element and through one of a first diode and a second diode. A cathode of the first diode is coupled to the bit line and an anode of the second diode is coupled to the sense line.
Abstract:
A magnetic tunnel junction (MTJ) with direct contact is manufactured having lower resistances, improved yield, and simpler fabrication. The lower resistances improve both read and write processes in the MTJ. The MTJ layers are deposited on a bottom electrode aligned with the bottom metal. An etch stop layer may be deposited adjacent to the bottom metal to prevent overetch of an insulator surrounding the bottom metal. The bottom electrode is planarized before deposition of the MTJ layers to provide a substantially flat surface. Additionally, an underlayer may be deposited on the bottom electrode before the MTJ layers to promote desired characteristics of the MTJ.