Abstract:
A test structure and method of its manufacture are presented for use in metrology measurements of a sample pattern. The test structure comprises a test pattern comprising a portion of the sample pattern including at least one selected feature and a blocking layer at least partially covering regions of the test structure adjacent to the at least one selected region.
Abstract:
A measurement system for use in measuring parameters of a patterned sample is presented. The system comprises: a broadband light source; an optical system configured as an interferometric system; a detection unit; and a control unit. The interferometric system defines illumination and detection channels having a sample arm and a reference arm comprising a reference reflector, and is configured for inducing an optical path difference between the sample and reference arms; the detection unit comprises a configured and operable for detecting a combined light beam formed by a light beam reflected from said reflector and a light beam propagating from a sample's support, and generating measured data indicative of spectral interference pattern formed by at least two spectral interference signatures. The control unit is configured and operable for receiving the measured data and applying a model-based processing to the spectral interference pattern for determining one or more parameters of the pattern in the sample.
Abstract:
A metrology system is presented for measuring parameters of a structure. The system comprises: an optical system and a control unit. The optical system is configured for detecting light reflection of incident radiation from the structure and generating measured data indicative of angular phase of the detected light components corresponding to reflections of illuminating light components having different angles of incidence. The control unit is configured for receiving and processing the measured data and generating a corresponding phase map indicative of the phase variation along at least two dimensions, and analyzing the phase map using modeled data for determining one or more parameters of the structure.
Abstract:
A method, a system, and a non-transitory computer readable medium for Raman spectroscopy. The method may include determining first acquisition parameters of a Raman spectroscope to provide a first acquisition set-up, the determining is based on at least one expected radiation pattern to be detected by a sensor of the Raman spectroscope as a result of an illumination of a first area of a sample, the first area comprises a first nano-scale structure, wherein at least a part of the at least one expected radiation pattern is indicative of at least one property of interest of the first nano-scale structure of the sample; wherein the first acquisition parameters belong to a group of acquisition parameters; setting the Raman spectroscope according to the first acquisition set-up; and acquiring at least one first Raman spectrum of the first nano-scale structure of the sample, while being set according to the first acquisition set-up
Abstract:
A method and system are presented for use in measuring one or more characteristics of patterned structures. The method comprises: providing measured data comprising data indicative of at least one Raman spectrum obtained from a patterned structure under measurements using at least one selected optical measurement scheme each with a predetermined configuration of at least one of illuminating and collected light conditions corresponding to the characteristic(s) to be measured; processing the measured data, and determining, for each of the at least one Raman spectrum, a distribution of Raman-contribution efficiency (RCE) within at least a part of the structure under measurements, being dependent on characteristics of the structure and the predetermined configuration of the at least one of illuminating and collected light conditions in the respective optical measurement scheme; analyzing the distribution of Raman-contribution efficiency and determining the characteristic(s) of the structure.
Abstract:
A sample comprising an overlay target is presented. The overlay target comprises at least one pair of patterned structures, the patterned structures of the pair being accommodated in respectively bottom and top layers of the sample with a certain vertical distance h between them, wherein a pattern in at least one of the patterned structures has at least one pattern parameter optimized for a predetermined optical overlay measurement scheme with a predetermined wavelength range.
Abstract:
An optical method and system are presented for use in measurement of isolated features of a structure. According to this technique, Back Focal Plane Microscopy (BFM) measurements are applied to a structure and measured data indicative thereof is obtained, wherein the BFM measurements utilize dark-field detection mode while applying pinhole masking to incident light propagating through an illumination channel towards the structure, the measured data being thereby indicative of a scattering matrix characterizing scattering properties of the structure, enabling identification of one or more isolated features of the structure.
Abstract:
An inspection system and method are presented for inspecting structures having a pattern formed by an array of elongated grooves having high aspect-ratio geometry, such as semiconductor wafers formed with vias. The inspection system comprises an imaging system and a control unit. The imaging system is configured and operable for imaging the structure with a dark-field imaging scheme and generating a dark-field image. The control unit comprises an analyzer module for analyzing pixels brightness in the dark-field image for identifying a defective groove, being a groove characterized by pixels brightness in the dark-field image lower than nominal brightness by a predetermined factor.
Abstract:
A method and system are presented for use in optical measurements on patterned structures. The method comprises performing a number of optical measurements on a structure with a measurement spot configured to provide detection of light reflected from an illuminating spot at least partially covering at least two different regions of the structure. The measurements include detection of light reflected from said at least part of the at least two different regions comprising interference of at least two complex electric fields reflected from said at least part of the at least two different regions, and being therefore indicative of a phase response of the structure, carrying information about properties of the structure.
Abstract:
An optical method and system are presented for use in measurement of isolated features of a structure. According to this technique, Back Focal Plane Microscopy (BFM) measurements are applied to a structure and measured data indicative thereof is obtained, wherein the BFM measurements utilize dark-field detection mode while applying pinhole masking to incident light propagating through an illumination channel towards the structure, the measured data being thereby indicative of a scattering matrix characterizing scattering properties of the structure, enabling identification of one or more isolated features of the structure.