Abstract:
A control system and method are provided for use in managing optical measurements on target structures. The control system comprises: data input utility for receiving input data indicative of a size of a target structure to be measured and input data indicative of illumination and collection channels of an optical measurement system; data processing utility for analyzing the input data, and an interplay of Point Spread Functions (PSFs) of the illumination and collection channels, and determining data indicative of optimal tailoring of apertures to be used in the optical measurement system for optimizing ensquared energy for measurements on the given target structure, the optimal tailoring comprising at least one of the following: an optimal ratio between numerical apertures of the illumination and collection channels; and an optimal orientation offset of physical apertures in the illumination and collection channels.
Abstract:
A measurement system for use in measuring parameters of a patterned sample, the system including a broadband light source, an optical system configured as an interferometric system, a detection unit, and a control unit, where the interferometric system defines illumination and detection channels having a sample arm and a reference arm having a reference reflector, and is configured for inducing an optical path difference between the sample and reference arms, the detection unit for detecting a combined light beam formed by a light beam reflected from the reflector and a light beam propagating from a sample's support, and generating measured data indicative of spectral interference pattern formed by spectral interference signatures, and the control unit for receiving the measured data and applying a model-based processing to the spectral interference pattern for determining one or more parameters of the pattern in the sample.
Abstract:
A measurement system is presented for use in metrology measurements on patterned samples. The system comprises: at least one light source device configured to generate broadband light, at least one detection device configured to provide spectral information of detected light, and an optical system. The optical system comprises at least an oblique channel system for directing incident light generated by the light source(s) along an oblique illumination channel onto a measurement plane, on which a sample is to be located, and directing broadband light specularly reflected from the sample along a collection channel to the detection device(s). The optical system further comprises an interferometric unit comprising a beam splitting/combining device and a reference reflector device. The beam splitting/combining device is accommodated in the illumination and collection channels and divides light propagating in the illumination channel into sample and reference light beams propagating in sample and reference paths, and combines reflected reference and sample paths into the collection channel to thereby create a spectral interference pattern on a detection plane.
Abstract:
A metrology system is presented for measuring parameters of a structure. The system comprises: an optical system and a control unit. The optical system is configured for detecting light reflection of incident radiation from the structure and generating measured data indicative of angular phase of the detected light components corresponding to reflections of illuminating light components having different angles of incidence. The control unit is configured for receiving and processing the measured data and generating a corresponding phase map indicative of the phase variation along at least two dimensions, and analyzing the phase map using modeled data for determining one or more parameters of the structure.
Abstract:
A measurement system for use in measuring parameters of a patterned sample is presented. The system comprises: a broadband light source; an optical system configured as an interferometric system; a detection unit; and a control unit. The interferometric system defines illumination and detection channels having a sample arm and a reference arm comprising a reference reflector, and is configured for inducing an optical path difference between the sample and reference arms; the detection unit comprises a configured and operable for detecting a combined light beam formed by a light beam reflected from said reflector and a light beam propagating from a sample's support, and generating measured data indicative of spectral interference pattern formed by at least two spectral interference signatures. The control unit is configured and operable for receiving the measured data and applying a model-based processing to the spectral interference pattern for determining one or more parameters of the pattern in the sample.
Abstract:
A metrology system is presented for measuring parameters of a structure. The system comprises: an optical system and a control unit. The optical system is configured for detecting light reflection of incident radiation from the structure and generating measured data indicative of angular phase of the detected light components corresponding to reflections of illuminating light components having different angles of incidence. The control unit is configured for receiving and processing the measured data and generating a corresponding phase map indicative of the phase variation along at least two dimensions, and analyzing the phase map using modeled data for determining one or more parameters of the structure.
Abstract:
A control system and method are provided for use in managing optical measurements on target structures. The control system comprises: data input utility for receiving input data indicative of a size of a target structure to be measured and input data indicative of illumination and collection channels of an optical measurement system; data processing utility for analyzing the input data, and an interplay of Point Spread Functions (PSFs) of the illumination and collection channels, and determining data indicative of optional tailoring of apertures to be used in the optical measurement system for optimizing ensquared energy for measurements on the given target structure, the optimal tailoring composing at least one of the following: an optimal ratio between numerical apertures of the illumination and collection channels; and an optimal orientation offset of physical apertures in the illumination and collection channels.