Abstract:
For example, a digital PLL may include a digitally controlled Ring Oscillator (DCRO) configured to generate a frequency output based on a control signal, the DCRO comprising a plurality of stages in a cyclic order, a first stage of the plurality of stages comprising a plurality of inverter modules controlled by the control signal and comprising a plurality of outputs that drive inputs of a plurality of second stages in the plurality of stages; a decoder to decode a phase of the DCRO based on a plurality of sampled phases of the plurality of stages of the DCRO; and a phase error estimator to estimate a phase error based on the phase of the DCRO and a frequency control word, the control signal is based on the phase error.
Abstract:
An apparatus for interpolating between a first signal edge and a second signal edge is provided. The apparatus includes a plurality of interpolation cells coupled to a common node. At least one of the plurality of interpolation cells is configured to supply, based on a control word, the first signal edge and/or the second signal edge to the common node. Further, the apparatus includes a control circuit configured to activate all of the plurality interpolation cells in a first mode of operation, and to deactivate part of the plurality of interpolation cells in a second mode of operation.
Abstract:
A calibration system operates to calibrate or correct a digital-to-time converter (DTC) that comprises a detector component and a distortion correction component. The DTC can receive one or more signals and a digital code to generate a modulation signal by controlling an offset of the one or more signals based on the digital code. The detector component can comprise a TDC or another DTC that operates to measure a dynamic behavior in response to detecting nonlinearities of the modulation signal. The distortion correction component can generate a set of distortion data that removes the dynamic behavior from an output of the DTC based on the measurement.
Abstract:
This application discusses, among other things, an interpolator architecture for digital-to-time converters (DTCs). In an example, an interpolator can include interpolation cells and retention cells configured provide an interpolated output based on at least two offset clock signals. In certain examples, an example interpolator can provide contention free control of the interpolator output with improved noise immunity.
Abstract:
An apparatus for interpolating between a first signal and a second signal is provided. The apparatus includes a first plurality of interpolation cells configured to generate a first interpolation signal at a first node. At least one of the first plurality of interpolation cells is configured to supply, based on a first number of bits of a control word, at least one of the first signal and the second signal to the first node. The apparatus further includes a second plurality of interpolation cells configured to generate a second interpolation signal at a second node. At least one of the second plurality of interpolation cells is configured to supply, based on a second number of bits of the control word, at least one of the first signal and the second signal to the second node. The apparatus additionally includes an interpolation circuit configured to weight the second interpolation signal based on a weighting factor, and to combine the first interpolation signal and the weighted second interpolation signal to generate a third interpolation signal.
Abstract:
A time-to-digital converter is provided. The time-to-digital converter includes a delay circuit configured to iteratively delay a reference signal for generating a plurality of delayed reference signals. Further, the time-to-digital converter includes a plurality of sample circuits each configured to sample an oscillation signal based on one of the plurality of delayed reference signals. The time-to-digital converter additionally includes a control circuit configured to de-activate at least one of the plurality of sample circuits based on a predicted value of the phase of the oscillation signal.
Abstract:
A time-to-digital converter is provided. The time-to-digital converter includes a delay circuit configured to iteratively delay a reference signal for generating a plurality of delayed reference signals. Further, the time-to-digital converter includes a plurality of sample circuits each configured to sample an oscillation signal based on one of the plurality of delayed reference signals. The time-to-digital converter additionally includes a control circuit configured to de-activate at least one of the plurality of sample circuits based on a predicted value of the phase of the oscillation signal.
Abstract:
A digital to time converter (DTC). The DTC includes a lookup table, a divider, a thermometric array and a switched capacitor array. The lookup table is configured to generate one or more corrections based on thermometric bits of an input signal. The divider is configured to generate a plurality of divider signals from an oscillator signal based on the one or more corrections. The thermometric array is configured to generate a medium approximation signal from the plurality of divider signals based on the one or more corrections. The switched capacitor array is configured to generate a digital delay signal from the medium approximation signal based on the one or more corrections and switched capacitor bits of the input signal.
Abstract:
A digital phase lock loop (DPLL) device or system can operate to analyze and estimate a deterministic jitter in the digital domain, while correcting for it in the analog domain. A reference oscillator can provide an analog reference signal to the DPLL via a reference path. A shaper of the reference path can process the analog reference signal and provide a digital signal to a doubler component that doubles the frequency for a digital reference signal. The doubler component itself can add deterministic jitter to the noise of the digital reference signal it provides to the DPLL. An estimation of the DPLL performs various calibration processes to determine the deterministic jitter in the digital domain and provide an analog bias signal to the signal shaper component to correct for the deterministic jitter, keeping it at around zero.
Abstract:
A digital to time converter (DTC). The DTC includes a lookup table, a divider, a thermometric array and a switched capacitor array. The lookup table is configured to generate one or more corrections based on thermometric bits of an input signal. The divider is configured to generate a plurality of divider signals from an oscillator signal based on the one or more corrections. The thermometric array is configured to generate a medium approximation signal from the plurality of divider signals based on the one or more corrections. The switched capacitor array is configured to generate a digital delay signal from the medium approximation signal based on the one or more corrections and switched capacitor bits of the input signal.