Abstract:
A method for performing a combined protein and nucleic acid assay on a target captured by a capture agent, includes providing a microfluidic device having a microfluidic channel network having at least one microfluidic channel, the channel arranged to receive fluid, the device having at least two micro-particles disposed in fixed position in the channel, the micro-particles being functionalized with a capture agent for the assay, one of the micro-particles in the channel being functionalized with an antibody or antigen capture agent and another of the micro-particles being functionalized with a nucleic acid capture agent. In some embodiments, the network may have at least two microfluidic channels, each channel of the two channels arranged to receive portions of the same fluid and to be fluidicly isolatable from each other, the device having at least two micro-particles disposed in fixed position in the network channels, the micro-particles being functionalized with a capture agent, one of the micro-particles in one of the channels being functionalized with an antibody or antigen capture agent and another of the micro-particles in another of the channels being functionalized with a nucleic acid capture agent. The method may also include detecting both protein and nucleic acid present in an input sample using the respectively functionalized micro particles. In some embodiments, the micro particles may be micro-length tubes or glass nano reactors.
Abstract:
A method and system for heating and/or inspecting a portable microfluidic assay cartridge for performing an assay includes receiving the assay cartridge on a receiving region of a translatable table under automated control, heating the cartridge, during performance of the assay, with a planar radiant heater plate, the heater plate having an aperture through which an inspection axis extends, and/or inspecting the cartridge using an optical system constructed to inspect the cartridge along the inspection axis by reading a fluorescent light signal which passes through the aperture in the heater plate. In addition, the cartridge moves with movement of the translation table, and the heater plate and optical system may be stationary, and the inspection axis may be fixed.
Abstract:
A pneumatically driven portable assay cartridge having analyte capture regions associated with microfluidic channels within its interior, the portable cartridge having pneumatic ports clampable against pneumatic ports of an operating instrument for controlled application of positive pressure and vacuum to pneumatic operating channels within the cartridge, the cartridge having a well for receiving sample from a user and microfluidic channels that include pneumatically operated pistons and valves controllable by the pneumatic operating channels to cause all flows of the assay from the reservoirs through reaction regions within the cartridge to on-board waste reservoir during conduct of the assay.
Abstract:
A method of flowing a fluid with a tracer in a microfluidic channel of an assay device and detecting the tracer for determining the channel location or condition of the channel.
Abstract:
A method of making an assay device comprising providing micro-elements in the form of micro-particles or micro-length tube detection elements and thereafter with an automated tool, picking and placing the micro-elements into open-sided microfluidic channels in a body.
Abstract:
A microfluidic device comprising a microfluidic channel network sealed on one side by a membrane sheet, the sheet having PDMS defining at least the surface sealing the channel, the membrane sheet on its opposite side sealing one side of a pneumatic channel, the pneumatic channel arranged to enable pneumatic deflection of a deflectable portion of the membrane sheet into contact with an opposed surface to control flow in a channel of the network, the membrane sheet confining in a channel of the network at least one micro-particle, micro-length tube or glass nano reactor, functionalized with a capture agent, that has been inserted into that channel. A microfluidic device having a microfluidic channel containing at least two micro-particles, micro-length tubes or glass nano reactors, one functionalized with nucleic acid and another with antibody or antigen. A microfluidic device having a microfluidic channel containing at least one micro-length tube or glass nano reactor functionalized to capture nucleic acid, the device constructed to enable recovery of the nucleic acid captured by the device.
Abstract:
An operating and reading instrument for performing an assay employing a portable microfluidic assay cartridge, the instrument comprising a translatable table under automated control, the translatable table carrying a receiving region for the portable cartridge and carrying a port system connectable to the cartridge that includes at least one remotely automated valve carried by the translatable table, the valve arranged to apply pressurized flowable substance at selected times to the cartridge while the cartridge is on the translatable table.
Abstract:
A microfluidic device comprising a microfluidic channel network sealed on one side by a membrane sheet, the sheet having PDMS defining at least the surface sealing the channel, the membrane sheet on its opposite side sealing one side of a pneumatic channel, the pneumatic channel arranged to enable pneumatic deflection of a deflectable portion of the membrane sheet into contact with an opposed surface to control flow in a channel of the network, the membrane sheet confining in a channel of the network at least one micro-particle, micro-length tube or glass nano reactor, functionalized with a capture agent, that has been inserted into that channel. A microfluidic device having a microfluidic channel containing at least two micro-particles, micro-length tubes or glass nano reactors, one functionalized with nucleic acid and another with antibody or antigen. A microfluidic device having a microfluidic channel containing at least one micro-length tube or glass nano reactor functionalized to capture nucleic acid, the device constructed to enable recovery of the nucleic acid captured by the device.
Abstract:
A method of making an assay device comprising providing micro-elements in the form of micro-particles or micro-length tube detection elements and thereafter with an automated tool, picking and placing the micro-elements into open-sided microfluidic channels in a body.
Abstract:
A pneumatically driven portable assay cartridge having analyte capture regions associated with microfluidic channels within its interior, the portable cartridge having pneumatic ports clampable against pneumatic ports of an operating instrument for controlled application of positive pressure and vacuum to pneumatic operating channels within the cartridge, the cartridge having a well for receiving sample from a user and microfluidic channels that include pneumatically operated pistons and valves controllable by the pneumatic operating channels to cause all flows of the assay from the reservoirs through reaction regions within the cartridge to on-board waste reservoir during conduct of the assay.