Abstract:
Herein disclosed is a method of generating products from microorganisms, comprising super-saturating a liquid medium with a gas consumable by the microorganisms in a high shear device operating at a shear rate of greater than 1,000,000 s−1 to produce a gas-super-saturated (GSS) medium, wherein the GSS medium maintains a GSS level for at least 10 minutes; feeding the GSS medium to microorganisms; allowing the microorganisms to grow by consuming the gas and generate products via photosynthesis or chemosynthesis; and recovering the products. In an embodiment, the microorganisms are genetically modified. In an embodiment, the microorganisms include bacteria, protozoa, algae, or fungi, or a combination thereof. In an embodiment, the gas consumable by the microorganisms is selected from the group consisting of carbon dioxide, nitrogen, air, oxygen, methane, and combinations thereof. A suitable system is also discussed in this disclosure.
Abstract:
Herein disclosed is a method of generating products from microorganisms, comprising super-saturating a liquid medium with a gas consumable by the microorganisms in a high shear device operating at a shear rate of greater than 1,000,000 s−1 to produce a gas-super-saturated (GSS) medium, wherein the GSS medium maintains a GSS level for at least 10 minutes; feeding the GSS medium to microorganisms; allowing the microorganisms to grow by consuming the gas and generate products via photosynthesis or chemosynthesis; and recovering the products. In an embodiment, the microorganisms are genetically modified. In an embodiment, the microorganisms include bacteria, protozoa, algae, or fungi, or a combination thereof. In an embodiment, the gas consumable by the microorganisms is selected from the group consisting of carbon dioxide, nitrogen, air, oxygen, methane, and combinations thereof. A suitable system is also discussed in this disclosure.
Abstract:
A reactor comprising at least one contact surface made from, coated with, or impregnated by a catalyst, wherein the contact surface comprises a sintered metal or a ceramic, and wherein the reactor is configured to subject a reactant stream to shear. A system for carrying out a heterogeneously catalyzed reaction, the system comprising a reactor as described above and a pump configured for delivering reactants to the at least one reactor. A method for carrying out a heterogeneously-catalyzed reaction by introducing reactants into a reactor comprising at least one contact surface made from, coated with, or impregnated by a catalyst under conditions which promote production of a desired product, wherein the contact surface comprises a sintered metal or a ceramic, and forming a dispersion of reactants within the reactor, wherein the dispersion comprises droplets or gas bubbles of reactant with an average diameter of less than about 5 μm.
Abstract:
Herein disclosed is a method of producing value-added product from light gases, the method comprising: (a) providing light gases comprising at least one compound selected from the group consisting of C1-C6 compounds and combinations thereof; (b) intimately mixing the light gases with a liquid carrier in a high shear device to form a dispersion of gas in the liquid carrier, wherein the dispersion is supersaturated with the light gases and comprises gas bubbles at least some of which have a mean diameter of less than or equal to about 5 micron(s); (c) allowing the value-added product to form and utilizing vacuum to extract unreacted light gases from the liquid carrier; (d) extracting the value-added product; wherein the value-added product comprises at least one component selected from the group consisting of higher hydrocarbons, hydrogen, olefins, alcohols, aldehydes, and ketones. A system for producing value-added product from light gases is also disclosed.
Abstract:
Herein disclosed is a method for producing a predispersed wax product comprising: operating a high shear device having at least one rotor/stator, configurable for a shear rate of at least 20,000 s−1; introducing wax and a carrier liquid into said high shear device; and forming a dispersion of wax in a carrier liquid, wherein the wax comprises globules with an average diameter less than 5 mm.
Abstract:
Herein disclosed is a method for coal liquefaction comprising: supersaturating a hydrocarbonaceous liquid stream in a high shear device with a gas stream comprising hydrogen and optionally one or more C1-C6 hydrocarbons to form a supersaturated dispersion; and contacting the supersaturated dispersion with coal in the high shear device or in a coal liquefaction reactor to generate a product stream. In some embodiments, the method further comprises utilizing a conversion catalyst, wherein the catalyst is provided as a slurry, a fluidized bed, or a fixed bed. In some embodiments, the method further comprises feeding a conversion catalyst into the high shear device. In some embodiments, the method further comprises recycling at least a portion of an off gas from the reactor, recycling at least a portion of the product stream from the reactor, or both. Herein also disclosed is a system for coal liquefaction.
Abstract:
Herein disclosed is a catalyst composition for producing organic compounds comprising (a) a catalyst that promotes the oxidative coupling of methane (OCM) and a methane steam reforming (MSR) catalyst, wherein the catalyst composition causes oxidative dehydrogenation to form reactive species and oligomerization of the reactive species to produce the organic compounds; or (b) a catalyst that promotes syngas generation (SG) and a Fischer-Tropsch (FT) catalyst wherein the catalyst composition causes non-oxidative dehydrogenation to form reactive species and oligomerization of the reactive species to produce the organic compounds; or (c) a SG catalyst, a MSR catalyst, and a FT catalyst wherein the catalyst composition causes non-oxidative dehydrogenation to form reactive species and oligomerization of the reactive species to produce the organic compounds; or (d) a FT catalyst and a MSR catalyst wherein the catalyst composition causes reforming reactions and chain growing reactions to produce the organic compounds.
Abstract:
A method and system for producing dispersed waxes, including a high shear mechanical device. In one embodiment, the method comprises forming a dispersion of wax globules in a carrier liquid in a high shear device prior to implementation in a waxy product. In another instance the system for producing waxy products comprises a high shear device for dispersing wax in a carrier liquid.
Abstract:
A method for introducing inhibitor into a fluid to be treated by forming a dispersion comprising droplets, particles, or gas bubbles of inhibitor dispersed in a continuous phase of a carrier, wherein forming the dispersion comprises subjecting a mixture of the inhibitor and the carrier to a shear rate of greater than about 20,000 s−1 in a high shear device comprising at least one generator comprising a rotor and a complementarily-shaped stator, wherein the rotor and the stator each comprise grooves, and wherein the grooves of the stator and the grooves of the rotor of each generator are disposed in alternating directions, and using at least a portion of the dispersion to inhibit corrosion.
Abstract:
A system for the production of aerated fuels, the system including a high shear device configured to produce an emulsion of aerated fuel comprising gas bubbles dispersed in a liquid fuel, wherein the gas bubbles in the emulsion have an average bubble diameter of less than about 5 μm, and an internal combustion engine configured for the combustion of the emulsion, and wherein the gas comprises at least one component selected from the group consisting of air, water vapor, methanol, nitrous oxide, propane, nitromethane, oxalate, organic nitrates, acetone, kerosene, toluene, and methyl-cyclopentadienyl manganese tricarbonyl.