Abstract:
A gas to liquids process with a reduced CO2 footprint to convert both natural gas and a renewable feedstock material into fuels or chemicals. In one embodiment of the invention, a natural gas feed is converted into synthesis gas containing hydrogen and carbon monoxide. A minor portion of the hydrogen is thereafter extracted from the synthesis gas. The synthesis gas is converted to hydrocarbons in a Fischer Tropsch reaction. The Fischer Tropsch hydrocarbon product and a renewable feedstock are hydroprocessed with the extracted hydrogen in order to produce fuels and/or chemicals. Waste products from the renewable feed are recycled to produce additional synthesis gas for the Fischer Tropsch reaction.
Abstract:
The present invention relates to a catalytic hydroconversion process in dispersed phase of extra-heavy and heavy crude oils for upgrading their transport properties, that operates at low severity conditions, in such a way that the obtained product can be transported by conventional pumping to the distribution and refining centers.The main technical contributions of the hydroconversion process in dispersed phase of this invention to upgrade the transport properties of heavy and extra-heavy crudes are:Compact size and can be localized next to the production facilities on ground or offshore Use of operating conditions at low severity Reduction of the viscosity and increase of the API gravity at values that allow the transportation by pipeline of heavy or extra-heavy crude Upgrading of the crude oil properties in a permanent way Hydrocarbon and gases from production centers are used as supplies Operation in dispersed phase avoiding plugging problems Use of low-cost disposable catalysts at low concentrations
Abstract:
A catalytic hydrocracking reactor vessel includes enhanced components for the conversion of a hydrogen gas and fossil fuel feedstream to light liquid hydrocarbons. The reactor vessel comprises one or more of a reactor cup riser with a helical cyclonic separator conduit for separating a liquid and vapor product stream to provide an essentially vapor-free liquid recycle stream; a grid plate bubble cap with wall housing having serrated edges for producing small hydrogen bubbles of increased total surface area of bubbles at lower pressure drop; a feedstream inlet pipe sparger containing rows of downward directed slots for even distribution of the feedstream across the cross-sectional area of the reactor and providing free drain of solid particles from the sparger; and optionally a liquid recycle inlet distributor containing vertically curved plates for creating a whirling motion in the liquid recycle stream for better mixing with the feedstream with minimal solids settling.