Abstract:
Herein disclosed is a method of processing a medium containing algae microorganisms to produce algal oil and by-products, comprising providing the medium containing algae microorganisms; passing the medium through a rotor-stator high shear device; disintegrating cell walls of and intracellular organelles in the algae microorganisms to release algal oil and by-products; and removing the algae medium from an outlet of the high shear device. In an embodiment, disintegration is enhanced by a penetrating gas capable of permeating the cell wall. In an embodiment, enhancement is accomplished by super-saturation of the penetrating gas in the medium or increased gas pressure in a vessel. In an embodiment, the penetrating gas is different from the gas produced by the cell during respiration. A suitable system is also discussed in this disclosure.
Abstract:
Herein disclosed is a method of producing value-added product from light gases, the method comprising: (a) providing light gases comprising at least one compound selected from the group consisting of C1-C6 compounds and combinations thereof; (b) intimately mixing the light gases with a liquid carrier in a high shear device to form a dispersion of gas in the liquid carrier, wherein the dispersion is supersaturated with the light gases and comprises gas bubbles at least some of which have a mean diameter of less than or equal to about 5 micron(s); (c) allowing the value-added product to form and utilizing vacuum to extract unreacted light gases from the liquid carrier; (d) extracting the value-added product; wherein the value-added product comprises at least one component selected from the group consisting of higher hydrocarbons, hydrogen, olefins, alcohols, aldehydes, and ketones. A system for producing value-added product from light gases is also disclosed.
Abstract:
Herein disclosed is a method of processing a medium containing algae microorganisms to produce algal oil and by-products, comprising providing the medium containing algae microorganisms; passing the medium through a rotor-stator high shear device; disintegrating cell walls of and intracellular organelles in the algae microorganisms to release algal oil and by-products; and removing the algae medium from an outlet of the high shear device. In an embodiment, disintegration is enhanced by a penetrating gas capable of permeating the cell wall. In an embodiment, enhancement is accomplished by super-saturation of the penetrating gas in the medium or increased gas pressure in a vessel. In an embodiment, the penetrating gas is different from the gas produced by the cell during respiration. A suitable system is also discussed in this disclosure.
Abstract:
Herein disclosed in a method comprising: shearing a feed comprising a solid component in a high shear device to produce a product, at least a portion of which comprises sheared solids; and separating at least some of the sheared solids from the product to produce a component-reduced product, wherein the solid component in the feed stream comprises a first particle density, and wherein the sheared solids in the product comprise a second particle density greater than the first particle density. In some embodiments, the solid component of the feed comprises gas trapped therein, and wherein at least a portion of said gas is released from the solid component upon shearing. Herein also is disclosed a method of comminuting solids in a feed stream comprising a solid component by processing the feed stream in a high shear device to produce a product stream comprising comminuted solids.
Abstract:
A method for culturing algae comprising, forming an emulsion comprising a gaseous stream and a media utilizing a high shear device, wherein the emulsion comprises gas bubbles, and wherein the high shear device comprises at least one toothed rotor and at least one stator; introducing the emulsion into a bioreactor; and introducing an algae into the bioreactor for growing the algae culture. Additionally, a method for producing liquids from an algae culture, the method comprising forming an emulsion comprising a buffer and algal components, wherein the emulsion comprises algal component globules; separating algal hydrocarbons; and processing algal hydrocarbons to form liquid hydrocarbons. Additionally, a system for producing liquids from an algae culture comprising at least one high shear device.
Abstract:
Herein disclosed is a method of hydrating an alkylene oxide that includes introducing an alkylene oxide into water to form a first stream; flowing the first stream through a high shear device to produce a second stream; and contacting the second stream with a catalyst in a reactor to hydrate the alkylene oxide and form an alkylene glycol.
Abstract:
Herein disclosed in a method comprising: shearing a feed comprising a solid component in a high shear device to produce a product, at least a portion of which comprises sheared solids; and separating at least some of the sheared solids from the product to produce a component-reduced product, wherein the solid component in the feed stream comprises a first particle density, and wherein the sheared solids in the product comprise a second particle density greater than the first particle density. In some embodiments, the solid component of the feed comprises gas trapped therein, and wherein at least a portion of said gas is released from the solid component upon shearing. Herein also is disclosed a method of comminuting solids in a feed stream comprising a solid component by processing the feed stream in a high shear device to produce a product stream comprising comminuted solids.
Abstract:
A method for producing acetic anhydride that includes operating a high shear device at a shear rate of greater than about 20,000 s−1, wherein the high shear device is configured with a rotor and a stator; forming in the high shear device an emulsion having a liquid catalyst dispersed in an acetic acid solution; introducing the emulsion into a reactor at conditions suitable for the production of ketene; and reacting at least some ketene with acetic acid to produce acetic anhydride.
Abstract:
A system for producing enhanced wax alternatives, including a high shear device comprising a rotor and a stator, and configured to process petroleum wax and base oil with a hydrogen-containing gas under shearing conditions to form a feedstock, wherein at least one of the rotor and the stator comprises a toothed surface; and a reactor comprising a reactor inlet and a reactor outlet, and configured for hydrogenation of the feedstock for a time sufficient to produce enhanced hydrogenated products, wherein the high shear device is in fluid communication with the reactor, whereby the feedstock is transferable therebetween.
Abstract:
A method for introducing inhibitor into a fluid to be treated by forming a dispersion comprising droplets, particles, or gas bubbles of inhibitor dispersed in a continuous phase of a carrier, wherein forming the dispersion comprises subjecting a mixture of the inhibitor and the carrier to a shear rate of greater than about 20,000 s−1 in a high shear device comprising at least one generator comprising a rotor and a complementarily-shaped stator, wherein the rotor and the stator each comprise grooves, and wherein the grooves of the stator and the grooves of the rotor of each generator are disposed in alternating directions, and using at least a portion of the dispersion to inhibit corrosion.