摘要:
In a semiconductor memory device and method, resistive-change memory cells are provided, each including a plurality of control transistors formed on different layers and variable resistance devices comprising a resistive-change memory. Each resistive-change memory cell includes a plurality of control transistors formed on different layers, and a variable resistance device formed of a resistive-change memory. In one example, the number of the control transistors is two. The semiconductor memory device includes a global bit line; a plurality of local bit lines connected to or disconnected from the global bit line via local bit line selection circuits which correspond to the local bit lines, respectively; and a plurality of resistive-change memory cell groups storing data while being connected to the local bit lines, respectively. Each of the resistive-change memory cells of each of the resistive-change memory cell groups comprises a plurality of control transistors formed on different layers, and a variable resistance device formed of a resistive-change memory. In addition, the semiconductor memory device has a hierarchical bit line structure that uses a global bit line and local bit lines. Accordingly, it is possible to increase both the integration density of the semiconductor memory device and the amount of current flowing through each of the resistive-change memory cells.
摘要:
Unit cells of metal oxide semiconductor (MOS) transistors are provided including an integrated circuit substrate and a MOS transistor on the integrated circuit substrate. The MOS transistor has a source region, a drain region and a gate region, the gate region being between the source region and the drain region. First and second channel regions are provided between the source and drain regions. The channel region is defined by first and second spaced apart protrusions in the integrated circuit substrate separated by a trench region. The first and second protrusions extend away from the integrated circuit substrate and upper surfaces of the first and second protrusions are substantially planar with upper surfaces of the source and drain regions. A gate electrode is provided in the trench region extending on sidewalls of the first and second spaced apart protrusions and on at least a portion of surfaces of the first and second spaced apart protrusions.
摘要:
A semiconductor memory device includes a substrate having first and second source/drain regions therein and a channel region therebetween. The device also includes first and second charge storage layers on the channel region, a first insulating layer on the channel region between the first and second charge storage layers, and a gate electrode on the insulating layer opposite the channel region and between inner sidewalls of the first and second charge storage layers. The gate electrode extends away from the substrate beyond the first and second charge storage layers. The device further includes second and third insulating layers extending from adjacent the inner sidewalls of the first and second charge storage layers along portions of the gate electrode beyond the first and second charge storage layers. Related methods of fabrication are also discussed.
摘要:
A memory device may include a substrate, a bit line, at least a first lower word line, at least a first trap site, a pad electrode, at least a first cantilever electrode, and/or at least a first upper word line. The bit line may be formed on the substrate in a first direction. The first lower word line and the first trap site may be insulated from the bit line and formed in a second direction crossing the bit line. The pad electrode may be insulated at sidewalls of the first lower word line and the first trap site and connected to the bit line. The first cantilever electrode may be formed in the first direction, connected to the pad electrode, floated on the first trap site with at least a first lower vacant space, and/or configured to be bent in a third direction. The first upper word line may be formed on the first cantilever electrode in the second direction with at least a first upper vacant space.
摘要:
A multi-bridge-channel MOSFET (MBCFET) may be formed by forming a stacked structure on a substrate that includes channel layers and interchannel layers interposed between the channel layers. Trenches are formed by selectively etching the stacked structure. The trenches run across the stacked structure parallel to each other and separate a first stacked portion including channel patterns and interchannel patterns from second stacked portions including channel and interchannel layers remaining on both sides of the first stacked portion. First source and drain regions are grown using selective epitaxial growth. The first source and drain regions fill the trenches and connect to second source and drain regions defined by the second stacked portions. Marginal sections of the interchannel patterns of the first stacked portion are selectively exposed. Through tunnels are formed by selectively removing the interchannel patterns of the first stacked portion beginning with the exposed marginal sections. The through tunnels are surrounded by the first source and drain regions and the channel patterns. A gate is formed along with a gate dielectric layer, the gate filling the through tunnels and extending onto the first stacked portion.
摘要:
There are provided a multi-bit electromechanical memory device capable of enhancing or maximizing a degree of integration of the memory device and a method of manufacturing the multi-bit electromechanical memory device which includes a substrate, a bit line on the substrate, and extending in a first direction; a word line on the bit line, insulated from the bit line, and extending in a second direction transverse to the first direction, and a cantilever electrode including a shape memory alloy. The cantilever electrode has a first portion electrically connected to the bit line and a second portion extending in the first direction, and spaced apart from the word line by an air gap, wherein the cantilever electrode, in a first state, is in electrical contact with the word line, and, in a second state, is spaced apart from the word line.
摘要:
In a method of manufacturing a semiconductor device, a preliminary active pattern including gate layers and channel layers is formed on a substrate. The gate layers and the channel layers are alternatively stacked. A hard mask is formed on the preliminary active pattern. The preliminary active pattern is partially etched using the hard mask as an etching mask to expose a surface of the substrate. The etched preliminary active pattern is trimmed to form an active channel pattern having a width less than a lower width of the hard mask. Source/drain layers are formed on exposed side faces of the active channel pattern and the surface. The gate layers are selectively etched to form tunnels. A gate encloses the active channel pattern and filling the tunnels. Related intermediate structures are also disclosed.
摘要:
In a method of manufacturing a semiconductor device, a preliminary active pattern including gate layers and channel layers is formed on a substrate. The gate layers and the channel layers are alternatively stacked. A hard mask is formed on the preliminary active pattern. The preliminary active pattern is partially etched using the hard mask as an etching mask to expose a surface of the substrate. The etched preliminary active pattern is trimmed to form an active channel pattern having a width less than a lower width of the hard mask. Source/drain layers are formed on exposed side faces of the active channel pattern and the surface. The gate layers are selectively etched to form tunnels. A gate encloses the active channel pattern and filling the tunnels. Related intermediate structures are also disclosed.
摘要:
A gate-all-around (GAA) transistor device has a pair of pillars that include the source/drain regions, a channel region bridging the source/drain regions, and a gate electrode and gate oxide which surround the channel region. The pillars are formed by providing a mono-crystalline silicon substrate, etching the substrate to form a pair of spaced-apart trenches such that a wall of the mono-crystalline silicon stands between the trenches, filling the trenches with insulative material, implanting impurities into the wall of mono-crystalline silicon, and forming an opening in the wall such that portions of the wall remain as pillars. A sacrificial layer is formed at the bottom of the opening. Then, the channel region is formed atop the sacrificial layer between the pillars. The sacrificial layer is subsequently removed and the gate oxide and gate electrode are formed around the channel region. One or more sidewall spacers are used to establish the effective width of the channel region and/or minimize parasitic capacitance between the source/drain regions and gate electrode.
摘要:
A gate-all-around (GAA) transistor device has a pair of pillars that include the source/drain regions, a channel region bridging the source/drain regions, and a gate electrode and gate oxide which surround the channel region. The pillars are formed by providing a mono-crystalline silicon substrate, etching the substrate to form a pair of spaced-apart trenches such that a wall of the mono-crystalline silicon stands between the trenches, filling the trenches with insulative material, implanting impurities into the wall of mono-crystalline silicon, and forming an opening in the wall such that portions of the wall remain as pillars. A sacrificial layer is formed at the bottom of the opening. Then, the channel region is formed atop the sacrificial layer between the pillars. The sacrificial layer is subsequently removed and the gate oxide and gate electrode are formed around the channel region. One or more sidewall spacers are used to establish the effective width of the channel region and/or minimize parasitic capacitance between the source/drain regions and gate electrode.