Abstract:
A miniature oxygen sensor makes use of paramagnetic properties of oxygen gas to provide a fast response time, low power consumption, improved accuracy and sensitivity, and superior durability. The miniature oxygen sensor disclosed maintains a sample of ambient air within a micro-channel formed in a semiconductor substrate. O2 molecules segregate in response to an applied magnetic field, thereby establishing a measureable Hall voltage. Oxygen present in the sample of ambient air can be deduced from a change in Hall voltage with variation in the applied magnetic field. The magnetic field can be applied either by an external magnet or by a thin film magnet integrated into a gas sensing cavity within the micro-channel. A differential sensor further includes a reference element containing an unmagnetized control sample. The miniature oxygen sensor is suitable for use as a real-time air quality monitor in consumer products such as smart phones.
Abstract translation:微型氧传感器利用氧气的顺磁特性提供快速的响应时间,低功耗,提高的精度和灵敏度以及优异的耐久性。 所公开的微型氧传感器在半导体衬底中形成的微通道内保持环境空气样品。 O 2分子响应于施加的磁场而分离,从而建立可测量的霍尔电压。 环境空气样品中存在的氧气可以从施加磁场变化的霍尔电压变化推导出来。 磁场可以由外部磁体或集成到微通道内的气体感测腔中的薄膜磁体施加。 差分传感器还包括含有非磁化控制样品的参考元件。 微型氧传感器适用于智能手机等消费类产品中的实时空气质量监控。
Abstract:
An electronic device may include a surface mount integrated circuit (IC) package to be attached to a printed circuit board (PCB). The surface mount IC package may include at least one IC and an encapsulating material surrounding the at least one IC and having a component receiving cavity defined therein on a bottom surface thereof to be positioned adjacent the PCB. The surface mount IC package may also include electrical leads coupled to the at least one IC and extending outwardly from the encapsulating material to be coupled to the PCB. The electronic device may also include at least one electronic component carried within the component receiving cavity and that includes electrical contacts to be coupled to the PCB.
Abstract:
A universal electrochemical micro-sensor can be used either as a biosensor or an environmental sensor. Because of its small size and flexibility, the micro-sensor is suitable for continuous use to monitor fluids within a live subject, or as an environmental monitor. The micro-sensor can be formed on a reusable glass carrier substrate. A flexible polymer backing, together with a set of electrodes, forms a reservoir that contains an electrolytic fluid chemical reagent. During fabrication, the glass carrier substrate protects the fluid chemical reagent from degradation. A conductive micromesh further contains the reagent while allowing partial exposure to the ambient biological or atmospheric environment. The micromesh density can be altered to accommodate fluid reagents having different viscosities. Flexibility is achieved by attaching a thick polymer tape and peeling away the micro-sensor from the glass carrier substrate. The final structure is thereby transferred to the polymer tape, providing a flexible product.
Abstract:
A memory device may include memory cells. The method may include receiving a request of reading a selected data word associated with a selected code word stored with an error correction code, and reading a first code word representing a first version of the selected code word by comparing a state of each selected memory cell with a first reference. The method may include verifying the first code word, setting the selected code word according to the first code word in response to a positive verification, reading at least one second code word representing a second version of the selected code word, verifying the second code word, and setting the selected code word according to the second code word in response to a negative verification of the first code word and to a positive verification of the second code word.
Abstract:
One or more embodiments are directed to system in package (SiP) for optical devices, including proximity sensor packaging. One embodiment is directed to an optical package that includes a stacked arrangement with a plurality of optical devices arranged over an image sensor processor die that is coupled to a first substrate. Between the two optical devices and the image sensor processor die there is provided at least a second substrate. In one embodiment, the optical package is a proximity sensor package and the optical devices include a light-emitting diode die and a light-receiving diode die. In one embodiment, the light-emitting diode die is secured to a surface of the second substrate and the light-receiving diode die is secured to a surface of a third substrate. The second and the third substrate may be secured to a surface of the image sensor processor die or to a surface of encapsulation material.
Abstract:
A method is described for making electronic modules includes molding onto a substrate panel a matrix panel defining a plurality of cavities, attaching semiconductor die to the substrate panel in respective cavities of the molded matrix panel, electrically connecting the semiconductor die to the substrate panel, affixing a cover to the molded matrix panel to form an electronic module assembly, mounting the electronic module assembly on a carrier tape, and separating the electronic module assembly into individual electronic modules. An electronic module is described which includes a substrate, a wall member molded onto the substrate, the molded wall member defining a cavity, at least one semiconductor die attached to the substrate in the cavity and electrically connected to the substrate, and a cover affixed to the molded wall member over the cavity.
Abstract:
The present disclosure is directed to an infrared sensor that includes a plurality of pairs of support structures positioned on the substrate, each pair including a first support structure adjacent to a second support structure. The sensor includes plurality of pixels, where each pixel is associated with one of the pairs of support structures. Each pixel includes a first infrared reflector layer on the substrate between the first and the second support structures, a membrane formed on the first and second support structures, a thermally conductive resistive layer on the membrane and positioned above the first infrared reflector layer, a second infrared reflector layer on the resistive layer, and an infrared absorption layer on the second infrared reflector layer.
Abstract:
An electronics assembly includes a semiconductor die assembly, an enclosure affixed to the semiconductor die assembly, the enclosure defining first and second chambers over the semiconductor die assembly, and first and second optical elements mounted in the first and second chambers, respectively. The semiconductor die assembly includes a semiconductor die encapsulated in a molded material, an encapsulation layer located on the top surface of the semiconductor die, and at least one patterned metal layer and at least one dielectric layer over the encapsulation layer. Conductive pillars extend through the encapsulation layer for electrical connection to the semiconductor die. The encapsulation layer blocks optical crosstalk between the first and second chambers. A method is provided for making the electronics assembly.
Abstract:
A bio-fluid test strip includes a fluid receiving area and a contact pad area for interfacing with a fluid sensing device. The test strip includes a fluid sensing electrodes and a first temperature sensing resistor in the fluid receiving area. The test strip further includes a second temperature sensing resistor in the contact pad area. The first and second temperature sensing resistors together provide an indication of the temperature difference between the fluid sensing area and ambience.
Abstract:
A fan-out wafer level package is provided with a semiconductor die embedded in a reconstituted wafer. A redistribution layer is positioned over the semiconductor die, and includes a land grid array on a face of the package. A copper heat spreader is formed in the redistribution layer over the die in a same layer as a plurality of electrical traces configured to couple circuit pads of the semiconductor die to respective contact lands of the land grid array. In operation, the heat spreader improves efficiency of heat transfer from the die to the circuit board.