摘要:
The present invention relates to fast complementary emitter follower drivers/buffers to be used in either a CMOS or pure complementary bipolar environment. The output driver (22) comprises top NPN and bottom PNP output transistors (T1, T2) with a common output node (N) connected therebetween. A terminal (15) is connected to the said output node (N) where the output signal (VOUT) is available. The pair of bipolar output transistors is biased between the first and second supply voltages (VH, GND). The output driver is provided with a voltage translator circuit (S) connected between the base nodes (B1, B2) of the output transistors (T1, T2). Logic signals (IN1, IN2), supplied by a preceding driving circuit (21), are applied to said base nodes. According to the invention, the voltage translator circuit (S) comprises two diodes (D1, D2) connected in series, preferably implemented with a main bipolar transistor having a junction shorted by a diode connected transistor to form a Darlington-like configuration. As a result, the voltage shift VS between the base nodes is selected to have the said output transistors operating at an operating point which ensures minimum delay and power consumption. In a typical bipolar technology, VS is made to be approximately equal to 1.5V. Additional features comprise the connection of a capacitor (C) between the base nodes and resistances (R1, R2) to the base nodes. The preceding driving circuit may be a CMOS logic gate or an ECL logic circuit.
摘要:
A method for forming fully recessed (planar) isolation regions on a semiconductor for the manufacture of CMOS integrated circuits, and the resulting semiconductor structure, comprising in a P doped silicon substrate with mesas formed therein, forming low viscosity sidewall spacers of borosilicate glass in contact with the sidewalls of those mesas designated to have N-channel devices formed therein; then filling the trenches in the substrate adjacent to the mesas with TEOS; and heating the structure until the boron in the sidewall spacers diffuses into the sidewalls of the designated mesas to form channel stops. These sidewall spacers reduce the occurrence of cracks in the TEOS by relieving internal mechanical stress therein and permit the formation of channel stops via diffusion, thereby permitting mesa walls to be substantially vertical.
摘要:
A chemical-mechanical (chem-mech) method for removing SiO.sub.2 protuberances at the surface of a silicon chip, such protuberances including "bird's heads". A thin etch stop layer of Si.sub.3 N.sub.4 is deposited onto the wafer surface, which is then chem-mech polished with a SiO.sub.2 water based slurry. The Si.sub.3 N.sub.4 acts as a polishing or etch stop barrier layer only on the planar portions of the wafer surface. The portions of the Si.sub.3 N.sub.4 layer located on the top and at the sidewalls of the "bird's heads" and the underlying SiO.sub.2 protuberances are removed to provide a substantially planar integrated structure.
摘要翻译:用于去除硅片表面的SiO 2突起的化学机械(化学机械)方法,包括“鸟头”的突起。 将Si 3 N 4的薄的蚀刻停止层沉积在晶片表面上,然后用SiO 2水基浆料进行化学研磨。 Si 3 N 4仅在晶片表面的平面部分上用作抛光或蚀刻阻挡层。 位于“鸟头”顶部和侧壁处的Si 3 N 4层的部分和下面的SiO 2突起被去除以提供基本平坦的整体结构。
摘要:
The invention proposes am improved twin MONOS memory device and its fabrication. The ONO layer is self-aligned to the control gate horizontally. The vertical insulator between the control gate and the word gate does not include a nitride layer. This prevents the problem of electron trapping. The device can be fabricated to pull the electrons out through either the top or the bottom oxide layer of the ONO insulator. The device also incorporates a raised memory bit diffusion between the control gates to reduce bit resistance. The twin MONOS memory array can be embedded into a standard CMOS circuit by the process of the present invention.
摘要:
The invention proposes am improved twin MONOS memory device and its fabrication. The ONO layer is self-aligned to the control gate horizontally. The vertical insulator between the control gate and the word gate does not include a nitride layer. This prevents the problem of electron trapping. The device can be fabricated to pull the electrons out through either the top or the bottom oxide layer of the ONO insulator. The device also incorporates a raised memory bit diffusion between the control gates to reduce bit resistance. The twin MONOS memory array can be embedded into a standard CMOS circuit by the process of the present invention.
摘要:
The invention proposes am improved twin MONOS memory device and its fabrication. The ONO layer is self-aligned to the control gate horizontally. The vertical insulator between the control gate and the word gate does not include a nitride layer. This prevents the problem of electron trapping. The device can be fabricated to pull the electrons out through either the top or the bottom oxide layer of the ONO insulator. The device also incorporates a raised memory bit diffusion between the control gates to reduce bit resistance. The twin MONOS memory array can be embedded into a standard CMOS circuit by the process of the present invention.
摘要:
The invention proposes am improved twin MONOS memory device and its fabrication. The ONO layer is self-aligned to the control gate horizontally. The vertical insulator between the control gate and the word gate does not include a nitride layer. This prevents the problem of electron trapping. The device can be fabricated to pull the electrons out through either the top or the bottom oxide layer of the ONO insulator. The device also incorporates a raised memory bit diffusion between the control gates to reduce bit resistance. The twin MONOS memory array can be embedded into a standard CMOS circuit by the process of the present invention.
摘要:
The invention proposes am improved twin MONOS memory device and its fabrication. The ONO layer is self-aligned to the control gate horizontally. The vertical insulator between the control gate and the word gate does not include a nitride layer. This prevents the problem of electron trapping. The device can be fabricated to pull the electrons out through either the top or the bottom oxide layer of the ONO insulator. The device also incorporates a raised memory bit diffusion between the control gates to reduce bit resistance. The twin MONOS memory array can be embedded into a standard CMOS circuit by the process of the present invention.
摘要:
A nonvolatile semiconductor memory device has a protective insulating film deposited on each of the side surfaces of a control gate electrode to protect the control gate electrode during the formation of a floating gate electrode, the floating gate electrode opposed to one of the side surfaces of the control gate electrode with the protective insulating film interposed therebetween so as to be capacitively coupled to the control gate electrode, a tunnel insulating film formed between the floating gate electrode and the semiconductor substrate, a drain region formed in a region of the semiconductor substrate containing a portion underlying the floating gate electrode, and a source region formed in a region of the semiconductor substrate opposite to the drain region relative to the control gate electrode.
摘要:
Presented in this invention is a fabricating method and its array organization for a high-density twin MONOS memory device integrating a twin MONOS memory cell array and CMOS logic device circuit. The invention consists of two fabrication methods, i) Simultaneous definition of memory gate and logic gate, thus improving the process integration scheme for easier and more reliable fabrication. ii) Bit line crosses word gate and control gate. The invention focuses on lowering parasitic sheet resistances to enable high speed while maintaining low manufacturing cost. The twin MONOS cell stores memory in two nitride memory cell elements underlying two shared control gates on both sidewalls of a select gate. The method is applicable to a device with a flat channel and/or a device having a step channel. Two embodiments of the present invention are disclosed.