摘要:
It is disclosed a device for image processing and learning comprising at least a “multi electrode array” (MEA), over which an homogeneous culture of interconnected neurons, so that forming a cell network, is grown on, wherein said MEA is able to stimulate and record the electric activity of said neurons. Methods for image processing and learning utilizing the device are disclosed too.
摘要:
Apparatus for measuring neural network activity with a textured semiconductor substrate. Sensor elements have a respective detection electrode on the substrate surface for detecting neural network signals, and the detected neural signals are a basis for outputting electrical sensor output signals via respective sensor element outputs. Each amplifier element has an input and an output. Each of the sensor elements has associated therewith one of the amplifier elements whose input is connected to the sensor output of the respective sensor element. The amplified sensor output signal is output the amplifier output as an amplifier output signal. An activity evaluator has an input, which is connected to at least one of the amplifier outputs, and an output. The activity evaluation device produces an activity signal, which is a measure of activity of the neural network, based on the amplifier output signal, and outputs the amplifier output signal via the evaluation output.
摘要:
Devices and methods are provided for administering a fluid to a neuronal site. The device comprises a reservoir, an aperture in fluid connection to the reservoir, and electrical means for moving to the fluid to or through the aperture. The electrical means may take the form of electroosmotic force, piezoelectric movement of a diaphragm or electrolysis of a solution. The electrical means may be external to the host, implanted in the host or may be photodiodes activated by light, particularly where the neuronal site is associated with the retina.
摘要:
This invention relates to methodologies and techniques that utilize programmable functionalized self-assembling nucleic acids, nucleic acid modified structures, and other selective affinity or binding moieties as building blocks for creating molecular electronic and photonic mechanisms; organizing, assembling, and interconnecting nanostructures, submicron- and micron-sized components onto silicon or other materials; organizing, assembling, and interconnecting nanostructures, submicron- and micron-sized components within perimeters of microelectronic or optoelectronic components/devices; and creating and manufacturing photonic and electronic structures, devices, and systems. In one aspect of this invention, a method for forming a multiple identity substrate material is provided comprising the steps of: providing a first affinity sequence at multiple locations on a support, providing a functionalized second affinity sequence, which reacts with the first affinity sequence, and has an unhybridized overhang sequence, and selectively cross-linking first affinity sequences and second affinity sequences.