摘要:
The invention relates to an electronic component that can be operated by means of an alternating voltage. Said component includes at least one input, at least one output and a pair of electronic sub-components with an identical function. The input(s) of the electronic component is/are coupled to a respective input of the electronic sub-components with an identical function and the output(s) of the electronic component is/are coupled to a respective output of said electronic sub-components. In addition, the electronic component is configured in such a way that at least one output only one output signal of the first sub-component of the pair of functionally identical electronic components can be picked up during a first half-wave of an alternating voltage, whereas only one output signal of the second sub-component of the pair of functionally identical electronic can be picked up during the second half-wave of the alternating voltage.
摘要:
A circuit arrangement includes a nonvolatile memory cell having a continuously variable characteristic that can be read out. A programming unit is coupled to the memory cell and designed to apply an analog signal to the memory cell in order to vary the characteristic, if the characteristic lies within a predetermined range of values, in such a way that the characteristic lies outside the predetermined range of values. A supply voltage unit is provided for providing a supply voltage. A changeover unit is coupled to the supply voltage unit and to the programming unit and designed to trigger the application of the analog signal to the memory cell if the supply voltage is interrupted.
摘要:
A circuit arrangement includes a nonvolatile memory cell having a continuously variable characteristic that can be read out. A programming unit is coupled to the memory cell and designed to apply an analog signal to the memory cell in order to vary the characteristic, if the characteristic lies within a predetermined range of values, in such a way that the characteristic lies outside the predetermined range of values. A supply voltage unit is provided for providing a supply voltage. A changeover unit is coupled to the supply voltage unit and to the programming unit and designed to trigger the application of the analog signal to the memory cell if the supply voltage is interrupted.
摘要:
A biochemical semiconductor chip laboratory is disclosed including a coupled address and control chip for biochemical analyses and a method for producing the same. In at least one embodiment the semiconductor chip laboratory has a semiconductor sensor chip, which provides numerous analytical positions for biochemical samples in a matrix. The sensor chip is located on the address and control chip and the analytical positions are in electric contact with a printed contact structure on the upper face of the address and control chip via low-resistance through-platings through the semiconductor substrate of the semiconductor chip.
摘要:
Biochip for capacitive stimulation and/or detection of biological tissues. The biochip has a carrier structure, at least one stimulation and/or sensor device, which is arranged in or at the carrier structure, and at least one dielectric layer, one layer area of which is arranged at the stimulation and/or sensor device and the opposite layer area of which forms a stimulation and/or sensor area for capacitive simulation and/or detection of biological tissues, wherein the dielectric layer comprises TiO2.
摘要:
A sensor arrangement including a control circuit is disclosed. In at least one embodiment, at least one sensor electrode can be charged and/or discharged therewith and a comparator unit for the comparison of a provided voltage for the at least one electrode with a reference voltage. A duration necessary for the charging/discharging of the at least one sensor electrode is determined, whereby, from the determined duration, it is determined whether a sensor event, in the form of a hybridisation between trap molecules and the particles for recording, has occurred.
摘要:
Circuit element having a first layer composed of an electrically insulating substrate material, a first electrically conductive material which is in the form of at least one discrete area, such that it is embedded in or applied to the substrate material, a second layer having a second electrically conductive material, and a monomolecular layer, which is composed of electrically active molecules which transports charge carriers, arranged between the first layer and the second layer. The monomolecular layer is immobilized and makes electrical contact with the second layer. Each of the electrically active molecules has a first unit, which is used as an electron donor, a second unit, which is used as an electron acceptor, wherein the electron donor and the electron acceptor form a diode, and at least one redox-active unit, by means of which a variable resistance is formed, arranged between the first unit and the second unit.
摘要:
A circuit arrangement is disclosed. The circuit arrangement includes a substrate, at least one sensor array arranged on and/or in the substrate, and at least one operating circuit integrated on and/or in the substrate and serving for driving the at least one sensor array. The operating circuit and the sensor array are arranged in a manner spatially separate from one another.
摘要:
A sensor element is for detecting DNA single strands which are possibly contained in an analyte. The sensor element includes a substrate and at least two electrodes in and/or on the substrate. In a surface area of the substrate, catcher molecules are immobilized and are adapted to hybridize to DNA single strands that are possibly contained in an analyte. The DNA single strands include a label that has dielectric properties that are different from those of the analyte. The electrodes are coupled to a detection device for detecting a change in the capacitative portion of the impedance between the electrodes due to a label that is present in an area surrounding the electrodes as a result of the hybridization event.
摘要:
In a first phase a first sensor signal, essentially comprising the current offset signal of the sensor, is applied to the input of an electronic circuit. The first sensor signal is fed to a first signal path and stored therein. In a second phase a second sensor signal, comprising the current offset signal and a time-dependent measured signal, is applied to the input and the stored first sensor signal is fed to the input by means of the first signal path, such that essentially the time dependent measured signal is fed by means of a second signal path coupled to the input.