Abstract:
Embodiments of an evolved Node-B (eNB), user equipment (UE), and methods of signaling for proximity services and device-to-device (D2D) discovery in an LTE network are generally described herein. In some embodiments, the eNB may support inter-cell device-to-device (D2D) discovery by transmitting signaling, to a first user equipment (UE), to indicate configuration information for a D2D discovery resource pool including D2D resources configured by one or more neighboring cells. The configuration information includes timing offsets between a serving cell of the first UE and the one or more neighboring cells. Other apparatuses and methods are also described herein.
Abstract:
Embodiments of a Generation Node-B (gNB), User Equipment (UE) and methods for communication are generally described herein. The gNB may allocate a resource pool of physical resource blocks (PRBs) and sub-frames for vehicle-to-vehicle (V2V) sidelink transmissions. The gNB may receive, from a UE, an uplink control message that indicates that the UE requests a V2V sidelink transmission of a prioritized message. The gNB may select, for the V2V sidelink transmission of the prioritized message, one or more PRBs and one or more sub-frames. The gNB may transmit, to the UE and to other UEs, a downlink control message that indicates: the selected PRBs, the selected sub-frames, and that the other UEs are to mute sidelink transmissions in the selected PRBs in the selected sub-frames to enable the V2V sidelink transmission of the prioritized message.
Abstract:
Embodiments of an enhanced node B (eNB), user equipment (UE) and methods of signaling for proximity services and device-to-device (D2D) discovery in an LTE network are generally described herein. In some embodiments, the eNB may support inter-cell device-to-device (D2D) discovery by transmitting signaling, to a first user equipment (UE), to indicate configuration information for a D2D discovery resource pool including D2D resources configured by one or more neighboring cells. The configuration information includes timing offsets between a serving cell of the first UE and the one or more neighboring cells. Other apparatuses and methods are also described.
Abstract:
A wireless communication device is configured to perform resource allocation of device-to-device (D2D) communication in a UE. Synchronization establishing circuitry is provided to acquire radio resource synchronization and to establish a time-frequency resource grid having resource units allocation to a D2D communication. Signal metric evaluation circuitry is provided to evaluate resource unit(s) of a received signal using a signal metric when the time-frequency resource grid has been established. Radio resource selection circuitry is provided to select a time resource of the time-frequency resource grid for allocation to a D2D communication depending upon a result of the resource unit evaluation. Other embodiments may be described and claimed.
Abstract:
Embodiments of an enhanced node B (eNB), user equipment (UE) and methods of signaling for proximity services and device-to-device (D2D) discovery in an LTE network are generally described herein. In some embodiments, the eNB may support inter-cell device-to-device (D2D) discovery by transmitting signaling, to a first user equipment (UE), to indicate configuration information for a D2D discovery resource pool including D2D resources configured by one or more neighboring cells. The configuration information includes timing offsets between a serving cell of the first UE and the one or more neighboring cells. Other apparatuses and methods are also described
Abstract:
Technology for dynamically reconfiguring an uplink-downlink (UL-DL) time-division duplexing (TDD) configuration is disclosed. In an example, a user equipment (UE) can have computer circuitry configured to: Receive a UL-DL reconfiguration indicator from a node to dynamically reconfigure a flexible subframe (FlexSF) to a different UL-DL transmission direction from a semi-static UL-DL configuration; apply a DL channel timing based on a DL favored UL-DL configuration; and apply a UL channel timing based on a UL favored UL-DL configuration. The FlexSF can be capable of changing an UL-DL transmission direction. The DL favored UL-DL configuration can include more DL subframes than a semi-static UL-DL TDD configuration for the UE, and the UL favored UL-DL configuration includes more UL subframes than a semi-static UL-DL TDD configuration for the UE.
Abstract:
Technology for dynamically reconfiguring an uplink-downlink (UL-DL) time-division duplexing (TDD) configuration is disclosed. In an example, a user equipment (UE) can have computer circuitry configured to: Receive a UL-DL reconfiguration indicator from a node to dynamically reconfigure a flexible subframe (FlexSF) to a different UL-DL transmission direction from a semi-static UL-DL configuration; apply a DL channel timing based on a DL favored UL-DL configuration; and apply a UL channel timing based on a UL favored UL-DL configuration. The FlexSF can be capable of changing an UL-DL transmission direction. The DL favored UL-DL configuration can include more DL subframes than a semi-static UL-DL TDD configuration for the UE, and the UL favored UL-DL configuration includes more UL subframes than a semi-static UL-DL TDD configuration for the UE.
Abstract:
Technology for a user equipment (UE) operable to perform adaptive time division duplexing (TDD) hybrid automatic repeat request (HARQ)-ACKnowledgement (ACK) reporting is described. The UE can implement an adaptive uplink-downlink (UL-DL) configuration received from an eNodeB. The UE can decode a downlink (DL) HARQ reference configuration received from the base station for a serving cell, wherein the DL HARQ reference configuration is for the implemented adaptive UL-DL configuration. The UE can decode a reference UL-DL configuration received from the base station via a system information block (SIB). The UE can encode HARQ-ACK feedback for transmission on an uplink channel of the serving cell in accordance with the DL HARQ reference configuration. The UE can perform uplink scheduling and the HARQ-ACK feedback based on the reference UL-DL configuration received from the base station via the SIB.
Abstract:
A wireless communication device is configured to perform resource allocation of device-to-device (D2D) communication in a UE. Synchronization establishing circuitry is provided to acquire radio resource synchronization and to establish a time-frequency resource grid having resource units allocation to a D2D communication. Signal metric evaluation circuitry is provided to evaluate resource unit(s) of a received signal using a signal metric when the time-frequency resource grid has been established. Radio resource selection circuitry is provided to select a time resource of the time-frequency resource grid for allocation to a D2D communication depending upon a result of the resource unit evaluation. Other embodiments may be described and claimed.
Abstract:
Embodiments of an enhanced node B (eNB), user equipment (UE) and methods of signaling for proximity services and device-to-device (D2D) discovery in an LTE network are generally described herein. In some embodiments, the eNB may support inter-cell device-to-device (D2D) discovery by transmitting signaling, to a first user equipment (UE), to indicate configuration information for a D2D discovery resource pool including D2D resources configured by one or more neighboring cells. The configuration information includes timing offsets between a serving cell of the first UE and the one or more neighboring cells. Other apparatuses and methods are also described.