Abstract:
A method for detecting a transmission from an interfering radio cell includes: receiving a signal comprising transmissions from a serving radio cell and from a plurality of interfering radio cells, wherein a reference symbol of a transmission from at least one interfering radio cell of the plurality of interfering radio cells is colliding with a reference symbol of a transmission from the serving radio cell; generating a set of transmission signal hypotheses, each of which is dependent on at least one interferer parameter of the at least one interfering radio cell; obtaining at least one interferer radio cell identifier; and detecting a transmission from at least one interfering radio cell of the plurality of interfering radio cells in the received signal based on the at least one interferer radio cell identifier and the set of transmission signal hypotheses.
Abstract:
Technology for dynamically reconfiguring an uplink-downlink (UL-DL) time-division duplexing (TDD) configuration is disclosed. In an example, a user equipment (UE) can have computer circuitry configured to: Receive a UL-DL reconfiguration indicator from a node to dynamically reconfigure a flexible subframe (FlexSF) to a different UL-DL transmission direction from a semi-static UL-DL configuration; apply a DL channel timing based on a DL favored UL-DL configuration; and apply a UL channel timing based on a UL favored UL-DL configuration. The FlexSF can be capable of changing an UL-DL transmission direction. The DL favored UL-DL configuration can include more DL subframes than a semi-static UL-DL TDD configuration for the UE, and the UL favored UL-DL configuration includes more UL subframes than a semi-static UL-DL TDD configuration for the UE.
Abstract:
Technology for dynamically reconfiguring an uplink-downlink (UL-DL) time-division duplexing (TDD) configuration is disclosed. In an example, a user equipment (UE) can have computer circuitry configured to: Receive a UL-DL reconfiguration indicator from a node to dynamically reconfigure a flexible subframe (FlexSF) to a different UL-DL transmission direction from a semi-static UL-DL configuration; apply a DL channel timing based on a DL favored UL-DL configuration; and apply a UL channel timing based on a UL favored UL-DL configuration. The FlexSF can be capable of changing an UL-DL transmission direction. The DL favored UL-DL configuration can include more DL subframes than a semi-static UL-DL TDD configuration for the UE, and the UL favored UL-DL configuration includes more UL subframes than a semi-static UL-DL TDD configuration for the UE.
Abstract:
Technology for a user equipment (UE) operable to perform adaptive time division duplexing (TDD) hybrid automatic repeat request (HARQ)-ACKnowledgement (ACK) reporting is described. The UE can implement an adaptive uplink-downlink (UL-DL) configuration received from an eNodeB. The UE can decode a downlink (DL) HARQ reference configuration received from the base station for a serving cell, wherein the DL HARQ reference configuration is for the implemented adaptive UL-DL configuration. The UE can decode a reference UL-DL configuration received from the base station via a system information block (SIB). The UE can encode HARQ-ACK feedback for transmission on an uplink channel of the serving cell in accordance with the DL HARQ reference configuration. The UE can perform uplink scheduling and the HARQ-ACK feedback based on the reference UL-DL configuration received from the base station via the SIB.
Abstract:
Technologies described herein provide mechanisms for a legacy UE traveling at a high speed (e.g., in a high speed train) to estimate the opposite Doppler shifts separately for different RRHs in an SFN so that the UE can more effectively receive a payload assigned by the SFN. In addition, the present disclosure provides UE signal process mechanisms to improve HST receiver performance such that good demodulation performance can be achieved without significant impacts on UE implementation. The present disclosure provides a specific framework to improve cellular SFN system operation using a combination of an SFN data signal transmissions from different RRHs and orthogonal non-SFN reference signal transmissions from different RRHs. A UE may estimate a propagation channel for each RRH using a reference signal and use this information to improve the demodulation of the combined SFN data signal.
Abstract:
Technology for a user equipment (UE) operable to perform adaptive time division duplexing (TDD) hybrid automatic repeat request (HARQ)-ACKnowledgement (ACK) reporting is described. The UE can implement an adaptive uplink-downlink (UL-DL) configuration received from an eNodeB. The UE can process a downlink (DL) HARQ reference configuration received from the eNodeB for a serving cell. The DL HARQ reference configuration can be for the implemented adaptive UL-DL configuration. The UE can format HARQ-ACK feedback for transmission on a physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) of the serving cell in accordance with the DL HARQ reference configuration.