Abstract:
Provided herein is a semiconductor device including a substrate; an active layer formed on top of the substrate; a protective layer formed on top of the active layer and having a first aperture; a source electrode, driving gate electrode and drain electrode formed on top of the protective layer; and a first additional gate electrode formed on top of the first aperture, wherein an electric field is applied to the active layer, protective layer and driving gate electrode due to a voltage applied to each of the source electrode, drain electrode and driving gate electrode, and the first additional gate electrode is configured to attenuate a size of the electric field applied to at least a portion of the active layer, protective layer and driving gate electrode.
Abstract:
Disclosed are a field effect transistor for high voltage driving including a gate electrode structure in which a gate head extended in a direction of a drain is supported by a field plate embedded under a region of the gate head so as to achieve high voltage driving, and a manufacturing method thereof. Accordingly, the gate head extended in the direction of the drain is supported by the field plate electrically spaced by using an insulating layer, so that it is possible to stably manufacture a gate electrode including the extended gate head, and gate resistance is decreased by the gate head extended in the direction of the drain and an electric field peak value between the gate and the drain is decreased by the gate electrode including the gate head extended in the direction of the drain and the field plate proximate to the gate, thereby achieving an effect in that a breakdown voltage of a device is increased.
Abstract:
A high frequency device includes: a capping layer formed on an epitaxial structure; source and drain electrodes formed on the capping layer; a multilayer insulating pattern formed on entire surfaces of the source and drain electrodes and the capping layer in a step shape; a T-shaped gate passing through the multilayer insulating pattern and the capping layer to be in contact with the epitaxial structure; and a passivation layer formed along entire surfaces of the T-shaped gate and the multilayer insulating pattern.
Abstract:
Provided herein is a patch antenna including a multilayered substrate on which a plurality of dielectric layers are laminated; at least one metal pattern layer disposed between the plurality of dielectric layers outside a central area of the multilayered substrate; an antenna patch disposed on an upper surface of the multilayered substrate and within the central area; a ground layer disposed on a lower surface of the multilayered substrate; a plurality of connection via patterns penetrating the plurality of dielectric layers to connect the metal pattern layer and the ground layer, and surrounding the central area; a transmission line comprising a first transmission line unit disposed on the upper surface of the multilayered substrate and located outside the central area, and a second transmission line unit disposed on the upper surface of the multilayered substrate and located within the central area; and an impedance transformer located below the second transmission line unit within the central area of the multilayered substrate.
Abstract:
A test device includes: a testing unit connected with a measurement line, and configured to apply bias to the measurement line and measure the measurement line; a plurality of switching units configured to electrically connect the measurement line and the plurality of samples; and a control unit configured to sequentially turn on the plurality of switching units to sequentially apply the bias to the plurality of samples. The control unit determines whether a corresponding device sample has a defect based on a first measurement value according to measurement by the testing unit when the bias is applied to each of the plurality of samples.
Abstract:
A method of request routing redirection includes: receiving, by a first content delivery network (CDN) among a plurality of CDNs connected by CDN interconnection (CDNi), a domain name system (DNS) request including a list of CDN-provider-identifications (IDs) of higher CDNs, from a client; determining whether the client's request is processable; and when the client's request is not processable, redirecting the request, while preventing a loop of the request routing on the basis of the list of the CDN-provider-IDs.
Abstract:
A high electron mobility transistor includes a substrate including a first surface and a second surface facing each other and having a via hole passing through the first surface and the second surface, an active layer on the first surface, a cap layer on the active layer and including a gate recess region exposing a portion of the active layer, a source electrode and a drain electrode on one of the cap layer and the active layer, an insulating layer on the source electrode and the drain electrode and having on opening corresponding to the gate recess region to expose the gate recess region, a first field electrode on the insulating layer, a gate electrode electrically connected to the first field electrode on the insulating layer, and a second field electrode on the second surface and contacting the active layer through the via hole.
Abstract:
The present invention relates to a high reliability field effect power device and a manufacturing method thereof. A method of manufacturing a field effect power device includes sequentially forming a transfer layer, a buffer layer, a barrier layer and a passivation layer on a substrate, patterning the passivation layer by etching a first region of the passivation layer, and forming at least one electrode on the first region of the barrier layer exposed by patterning the passivation layer, wherein the first region is provided to form the at least one electrode, and the passivation layer may include a material having a wider bandgap than the barrier layer to prevent a trapping effect and a leakage current of the field effect power device.