-
公开(公告)号:CN107390718A
公开(公告)日:2017-11-24
申请号:CN201710661240.X
申请日:2017-08-04
Applicant: 中国运载火箭技术研究院
IPC: G05D1/10
Abstract: 一种高速飞行强适应性180度翻转控制方法,首先获得输入条件,然后计算可控攻角范围,据此确定最佳翻转外形和最佳翻转攻角,设计机动路径,并根据机动路径设计攻角机动策略和翻转控制策略,完成高速飞行180度翻转控制。本发明充分考虑了新型高性能飞行器在180度翻转过程中气动外形的显著改变,确定了最佳翻转攻角,并对攻角机动路径进行了合理规划,明确了最佳翻转控制流程,使得整个机动过程中都在飞行器合理的稳定性和操纵性条件下进行,翻转可靠性高。可适应翻转过程中飞行器气动特性、稳定性、操纵性的大幅、剧烈变化,实现快速、可靠翻转。
-
公开(公告)号:CN106484969A
公开(公告)日:2017-03-08
申请号:CN201610847855.7
申请日:2016-09-23
Applicant: 中国运载火箭技术研究院
IPC: G06F17/50
CPC classification number: Y02T90/50 , G06F17/5009 , G06F17/5095
Abstract: 一种大包线强机动飞行器动力学高精度仿真方法,属于飞行器动力学与控制领域。该方法首先建立了大包线强机动飞行器的刚体弹性耦合动力学高阶模型,建模过程仅考虑小幅线性振动假设,充分考虑了飞行器大包线强机动飞行过程中显著且快时变的气动力和力矩、发动机推力和力矩、重力、姿态强机动、气动舵快速运动与结构弹性振动之间的相互耦合影响,模型包含了全面的高阶非线性项,刚体运动与弹性振动之间的耦合影响项、姿态机动和气动舵快速运动对弹性振动和姿态的影响项。因此,该高阶模型能够真实反映大包线强机动飞行器真实状态,利用该高阶模型进行仿真分析,可以用于验证飞行器设计的合理性,验证结果较传统模型更准确可靠。
-
公开(公告)号:CN103587680B
公开(公告)日:2015-12-23
申请号:CN201310485372.3
申请日:2013-10-16
Applicant: 中国运载火箭技术研究院
Abstract: 本发明公开了一种飞行器侧滑转弯控制方法,本发明针对操纵耦合或侧滑角对俯仰的气动耦合严重的飞行器,首先在给定飞行状态下考虑三通道操纵耦合和气动舵对俯仰的气动耦合来计算气动耦合操稳比,然后根据气动舵可用舵偏大小和气动耦合操稳比设计出优化的侧滑角指令容许范围,最后在优化的侧滑指令容许范围下生成侧滑转弯机动控制指令,与传统方法相比,本方法获得的侧滑转弯机动控制指令风险更小,在传统方法得到的侧滑角指令容许范围比本方法偏小的情况下,本方法获得的侧滑转弯机动控制指令能更充分利用飞行器的控制能力,因此与传统方法相比,本方法提高了飞行器侧滑转弯控制的精度和安全性。
-
公开(公告)号:CN103587681A
公开(公告)日:2014-02-19
申请号:CN201310485560.6
申请日:2013-10-16
Applicant: 中国运载火箭技术研究院
Abstract: 抑制侧滑角信号常值偏差影响的高超声速飞行器控制方法,(1)利用惯组实时测量飞行器的偏航角速度ωy和滚转角速度ωx,并利用惯组、传感器获取滚转角γ和侧滑角(2)计算γ与滚转角指令γc的偏差信号,对偏差信号Δγ进行积分并进行限幅后得到滚转角积分信号;(3)将滚转角积分信号、ωy分别进行放大后生成控制指令反馈到飞行器的方向舵上;ωx进行放大后生成控制指令反馈到飞行器的副翼上;将Δγ进行放大后生成控制指令反馈至飞行器的方向舵/副翼;(4)将所有反馈至方向舵的控制指令相加作为方向舵的总控制指令,飞行器上的伺服系统控制方向舵跟踪总控制指令;将所有反馈之副翼的控制指令相加作为副翼的总控制指令,飞行器上的伺服系统控制副翼跟踪总控制指令。
-
公开(公告)号:CN103587680A
公开(公告)日:2014-02-19
申请号:CN201310485372.3
申请日:2013-10-16
Applicant: 中国运载火箭技术研究院
Abstract: 本发明公开了一种飞行器侧滑转弯控制方法,本发明针对操纵耦合或侧滑角对俯仰的气动耦合严重的飞行器,首先在给定飞行状态下考虑三通道操纵耦合和气动舵对俯仰的气动耦合来计算气动耦合操稳比,然后根据气动舵可用舵偏大小和气动耦合操稳比设计出优化的侧滑角指令容许范围,最后在优化的侧滑指令容许范围下生成侧滑转弯机动控制指令,与传统方法相比,本方法获得的侧滑转弯机动控制指令风险更小,在传统方法得到的侧滑角指令容许范围比本方法偏小的情况下,本方法获得的侧滑转弯机动控制指令能更充分利用飞行器的控制能力,因此与传统方法相比,本方法提高了飞行器侧滑转弯控制的精度和安全性。
-
公开(公告)号:CN119668279A
公开(公告)日:2025-03-21
申请号:CN202411674684.3
申请日:2024-11-21
Applicant: 中国运载火箭技术研究院
IPC: G05D1/46 , G05D109/20
Abstract: 飞行器的轨迹设计方法、计算机程序产品及可读存储介质,涉及飞行器轨迹设计领域,基于飞行器针对风险区风险程度的测量数据,并根据自身动力学模型、飞行器气动性能、发动机能力等参数选取合适的航路点,并通过引入开关函数,根据飞行器是否位于风险区中动态调整目标函数,使得飞行器在低风险区按照燃料最优进行轨迹规划,而在高风险区则兼顾燃料与时间最优,以得到飞行器安全与航程能力的帕累托最优解,并通过序列凸优化方法实现快速轨迹规划。通过该方法,可以增强飞行器对于风险区域的适应能力,提高飞行器安全性,增加飞行任务目标实现概率,提升飞行器总体性能。
-
公开(公告)号:CN112504615A
公开(公告)日:2021-03-16
申请号:CN202011164994.2
申请日:2020-10-27
Applicant: 中国运载火箭技术研究院
Inventor: 胡鹏举 , 杨旸 , 费王华 , 秦云鹏 , 李杰奇 , 王国庆 , 郑雄 , 武健辉 , 李争学 , 王浩亮 , 曾星星 , 辜天来 , 尹戈玲 , 刘建妥 , 乔晓慧 , 姚星合
Abstract: 一种旋转加速式的磁悬浮电磁推进试验系统,包括:真空旋转加速段、试验段、磁悬浮电推进系统、能源存储分配系统、试验气体介质调控系统以及试验数据测量系统;试验模型通过旋转加速,获得初始速度并进入试验段,试验段内设置有磁悬浮电推进系统,通过磁悬浮电推进系统对试验模型进行速度控制,模拟飞行弹道;能源存储分配系统和试验气体介质调控系统均设置在试验段外侧,能源存储分配系统用于给磁悬浮电推进系统以及试验气体介质调控系统供电,试验气体介质调控系统用于调节密闭的试验段内部的气体压力及温度;试验数据测量系统用于采集试验模型运动数据。解决原有试验设备试验模型尺度受限、试验气体受污染、天地差异性等限制飞行器技术的难题。
-
公开(公告)号:CN107738755B
公开(公告)日:2019-08-09
申请号:CN201711139004.8
申请日:2017-11-16
Applicant: 中国运载火箭技术研究院
Abstract: 本发明涉及一种适应天地往返的高效主被动热管理系统及其设计方法,主被动热管理系统中的冷却网络包括燃料冷却管路、冷却换热器和液氮冷却系统;燃料箱中的燃料经所述冷却管路流至设置在高温部位的冷却换热器,对高温部位降温后,一部分进入发动机燃烧室提供推力,另一部分进入液氮冷却系统冷却后返回燃料箱。本发明高效主被动热管理系统采用全飞行器的主动防热和被动防热相结合,一方面对于高温部位保证其非烧蚀重复使用要求,另一方面对于非高温部位仅采用被动防热,降低防热系统复杂性,减小对燃料的需求。冷却网络先经过温度较低的部位,再通过发动机高温部位,提高燃料的利用率。
-
公开(公告)号:CN107738755A
公开(公告)日:2018-02-27
申请号:CN201711139004.8
申请日:2017-11-16
Applicant: 中国运载火箭技术研究院
Abstract: 本发明涉及一种适应天地往返的高效主被动热管理系统及其设计方法,主被动热管理系统中的冷却网络包括燃料冷却管路、冷却换热器和液氮冷却系统;燃料箱中的燃料经所述冷却管路流至设置在高温部位的冷却换热器,对高温部位降温后,一部分进入发动机燃烧室提供推力,另一部分进入液氮冷却系统冷却后返回燃料箱。本发明高效主被动热管理系统采用全飞行器的主动防热和被动防热相结合,一方面对于高温部位保证其非烧蚀重复使用要求,另一方面对于非高温部位仅采用被动防热,降低防热系统复杂性,减小对燃料的需求。冷却网络先经过温度较低的部位,再通过发动机高温部位,提高燃料的利用率。
-
公开(公告)号:CN105045273A
公开(公告)日:2015-11-11
申请号:CN201510494803.1
申请日:2015-08-12
Applicant: 中国运载火箭技术研究院
IPC: G05D1/08
Abstract: 本发明涉及一种双通道变质心飞行器,包括头部、中段和尾段,其特征在于:所述中段舱体内设有双通道变质心装置,所述双通道变质心装置包括有效载荷,所述有效载荷分为两组,其中一组有效载荷可沿本体坐标系X轴往复运动,另一组有效载荷可沿本体坐标系Z轴往复运动,实现飞行器质心在本体坐标系X轴和本体坐标系Z轴上的变化,本发明不需要空气舵和反作用姿态控制发动机,首次采用纯变质心控制的方式实现飞行器俯仰和滚转通道的控制,进而实现飞行器的大攻角、大倾侧角飞行,应用于通用再入飞行器等多种飞行器,具有广阔的应用前景。
-
-
-
-
-
-
-
-
-