Abstract:
A noise abatement system for internal combustion engines comprising: a containment body (12) equipped with an inlet hole (6) for the entry of exhaust gases from an internal combustion engine, a plurality of expansion chambers (10) placed in sequence and separated by parallel dividing partitions (13), each equipped with a through-hole (4) for the passage of gases placing in fluid communication two neighboring expansion chambers (10); said expansion chambers (10) having two opposing through-holes (4), one as gas inlet and one as gas outlet. A rotating shaft (9) is integrated in a rotating turbine (1), along an axis comprising the center of gravity of the expansion chambers (10) up to an opposite end of the containment body (12), said rotating shaft (9) having placed around said axis and on said shaft (9) rotary fins (3) which open and close the through-holes (4) between expansion chambers (10) alternately and generating a swirling movement of the flow of gas entering each expansion chamber (10).
Abstract:
An exhaust muffler includes a first muffler section connected to an exhaust pipe and a second muffler section connected to the first muffler section. Exhaust gases delivered from the exhaust pipe are discharged from the first muffler section and the second muffler section out of the exhaust muffler. The first muffler section includes a tubular member made up of an inner pipe to which the exhaust pipe is connected and an outer pipe covering the inner pipe, and a connector connecting the tubular member and the second muffler section to each other. The first muffler section has a first expansion chamber defined therein between the inner pipe and the outer pipe. The inner pipe houses therein a valve for changing an amount of exhaust gases passing through the inner pipe. The first muffler section includes a curved portion that is curved vertically as viewed in side elevation of the vehicle. The exhaust muffler has a second expansion chamber defined in the second muffler section rearward and upward of the first muffler section, the second expansion chamber having a cross-sectional area larger than a cross-sectional area of the first expansion chamber. There is thus provided an exhaust device for an internal combustion engine, which includes a muffler compact in a longitudinal direction thereof.
Abstract:
The present disclosure discloses a system for attenuating sound produced by a vehicle. The system comprises a navigation device associated with the vehicle for determining location details of the vehicle, a sound reduction unit provisioned in an exhaust assembly of the vehicle. The system further includes an Electronic Control Unit (ECU) of the vehicle communicatively coupled to the navigation device and the sound reduction unit. The ECU is configured to detect sound reduction location, by comparing the location details with a pre-defined location data and operate the sound reduction unit to attenuate sound produced by the vehicle when the sound reduction location is detected. The system of the present disclosure, attenuates sound intensity of the vehicle to a desired level by considering surrounding conditions of the vehicle, thus the vehicle noise may be automatically attenuated in the sound sensitive areas or locations.
Abstract:
An automotive vehicle includes an internal combustion engine that generates exhaust gas and an exhaust system that expels the exhaust gas from the vehicle via at least one of a first exhaust conduit and a second exhaust conduit. A disturbance sensor is installed within a cabin of the vehicle, and is configured to detect a disturbance within the cabin and to output a disturbance signal indicative of the disturbance. An exhaust valve has a plurality of positions and adjusts an amount of the exhaust gas delivered to the first and second exhaust conduits. The automotive vehicle further includes an electronic hardware controller in signal communication with the at least one disturbance sensor and the exhaust valve. The controller adjusts the position of the exhaust valve based on the disturbance signal to reduce the disturbance within the cabin.
Abstract:
A passive exhaust valve assembly includes an exhaust conduit that has a first pipe section attached in generally axial alignment with a second pipe section. The end portion of the first pipe section includes a circumferential segment disposed within the end portion of the second pipe section to form an overlapping interface. The end portions of the first and second pipe sections each include a flange protruding radially outward from the respective first or second pipe section, whereby the flanges engage with each other to form an axle seat therebetween. A support shaft extends laterally across an interior volume of the exhaust conduit and rotatably engages the axle seat. A valve plate is coupled to the support shaft within the interior volume of the exhaust conduit for moving relative to the exhaust conduit between open and closed positions.
Abstract:
An engine with an acoustic emissions valve or reflector for an exhaust system is disclosed. This reflector is disposed outside of the exhaust system—the reflector is disposed in the atmosphere into which the exhaust system discharges. The reflector is moved between a reflecting position (where the reflector reflects or obstructs acoustic emissions from the exhaust system) and a non-reflecting position (where the reflector does not obstruct the bulk exhaust gas flow from the exhaust system) by rotation of the crankshaft.
Abstract:
Provided is an engine apparatus that ensures highly accurate adjustment of the exhaust gas pressure of an exhaust manifold while providing an exhaust gas throttle device with a support structure of increased rigidity. The engine apparatus includes: an engine including the exhaust manifold; and the exhaust gas throttle device to adjust an exhaust gas pressure of the exhaust manifold. An exhaust gas intake side of a throttle valve easing of the exhaust gas throttle device is fastened to an exhaust gas exit of the exhaust manifold. An exhaust pipe is coupled to the exhaust manifold through the throttle valve casing.
Abstract:
A scrubbing muffler for internal combustion engines comprises coaxial counter-rotating disk pairs stacked in a cascade. Acoustic pulses are attenuated by doing work and dissipated by the circuitous path through the dynamic cascade. A motor and/or Venturi effect from slipstream over a vehicle assists exhaust and reduces backpressure for greater fuel economy. Exhaust gas fed at the axis is sheared between the disks of the first stage of the cascade as it passes radially outward into a shrouding tank disposed about the cascade. Vortex rebound at the tank wall advects flow radially inward back through the workspace between the first stage disks to axial extraction as feed for the second stage of the cascade. N2 and H2O, along with CO and NO, can pass radially inward to successive stages. Soot and CO2 stay in the tank. NO and CO are reduced at a Faraday disk cathode.
Abstract:
A muffler which reduces noises of a wide frequency band with a simple structure. Sound waves of an intake duct enter into and are received in a resonance box via a branch pipe. At the branch pipe, a movable body slidingly abuts a peripheral portion of an opening of a cut-out portion. Due to the movable body rotating, a range of opening/closing of the cut-out portion is changed, and a length of a neck portion formed by the branch pipe and an arc-shaped plate, and a lateral cross-sectional surface area of a distal end of the neck portion, are changed.
Abstract:
The present invention provides a muffler comprising a rotatable propeller within or adjacent to an expansion chamber to swirl exhaust gas towards the outlet. The muffler maintains the sound level of the exhaust within acceptable limits, while delivering improved power and/or fuel efficiency over that of standard mufflers.