Abstract:
A diffused resistor and a method for making the diffused resistor are disclosed. The diffused resistor is formed in a substantially pure portion of the thin semiconductor layer that is formed on an insulating substrate. The thin semiconductor layer has low a number of defects and mid-band gap states. This portion may be located in an electrically isolated region of the thin semiconductor layer. A resistive region is used to provide the resistance of the diff-used resistor. Contact regions are provided continguous with the the resistive region. The diff-used resistor can be formed by themselves or in conjunction with other circuit elements, such as a MOSFET, for example. Accordingly, also disclosed is a method for making the diffused resitor in conjunction with a MOSFET. The diffused resistor and the MOSFET are formed in electrically isolated semiconductor islands. The electrically isolated semiconductor islands are formed from the high quality thin semiconductor layer. Both non-silicide and silicide processes are disclosed. Also disclosed is a differential amplifier circuit that uses the disclosed diffused resistor embodiments.
Abstract:
An epitaxial pinched resistor includes a semiconductor substrate of a first conductivity type having a surface on which an epitaxial layer of a second conductivity type grown. An up isolation region of the first conductivity type is diffused from the surface of the semiconductor substrate up into the epitaxial layer. A first down isolation region of the first conductivity type is diffused down into the epitaxial layer and overlapping with the up isolation region. The first down isolation region and the up isolation region isolate a portion of the epitaxial layer to be used to conduct a current. A second down isolation region of the first conductivity type is diffused down into the epitaxial layer between first and second contact surface areas of the epitaxial layer and into the portion of the epitaxial layer used to conduct the current. The second down isolation region is diffused a depth approximately equal to the first down isolation region so as to reduce a conductive cross-sectional area of the epitaxial layer. First and second ohmic contacts of the second conductivity type are diffused into the first and second contact surface areas of the epitaxial layer. The present invention also provides a method of forming an epitaxial pinched resistor.
Abstract:
A method of manufacturing a semiconductor device furnished on a silicon substrate with a bipolar element part and a resistance element part formed of an impurity diffusion layer, having (a) a step of forming a first oxide film on said silicon substrate and on the component elements formed on said substrate throughout the entire surface thereof, (b) a step of selectively and sequentially removing the part of said first oxide film corresponding to the base region of said bipolar element part and the surface of said silicon substrate directly underlying said first oxide film and, at the same time, cleaning the freshly exposed surface, (c) a step of forming a second oxide film on said silicon substrate and said component elements formed thereon throughout the entire surface thereof thereby differentiating the thickness of the oxide film formed on said base region and the thickness of the oxide film formed on said resistance element part, and (d) a step of selectively and instantaneously implanting an ion into said bipolar element part and said resistance element part.
Abstract:
The present invention teaches fabrication of a high-resistance integrated circuit diffusion resistor that uses standard CMOS process steps. By appropriate masking during ion-implantation of source/drain diffusion regions, diffusion resistors created during NMOS source/drain implant may be counterdoped during PMOS source/drain implants and vice-versa. By appropriate choice of relative concentrations of a resistor dopant and counterdopant, and choice of diffusion depths, junction diodes can be formed which create a pinched resistor by constricting the current flow. The relative dopant concentrations can also be chosen to create regions of light effective doping within the diffusion resistor rather than creating junction diodes.
Abstract:
A semiconductor pressure sensor utilizes single-crystal silicon piezoresistive gage elements dielectrically isolated by silicon oxide from other such elements, and utilizes an etched silicon substrate with an etch stop. P-type implants form p-type piezoresistive gage elements and form p+ interconnections to connect the sensor to external electrical devices. The diaphragm is made from epitaxially-grown single-crystal silicon. Passivation nitride can be used for additional dielectric isolation. One practice of the invention provides over-range cavity protection, and thus increased robustness, by forming an over-range stop for the diaphragm through localized oxygen ion implantation and etching.
Abstract:
The present invention develops several methods used in a semiconductor fabrication process to form a resistive material having a specific resistive value. A first method uses the steps of: forming a titanium layer over a silicon substrate; and subjecting the titanium layer to a rapid thermal processing cycle. A second method uses the steps of: forming a titanium layer over a silicon substrate; subjecting the titanium layer to a rapid thermal processing cycle; and forming a titanium nitride layer over the thermally processed titanium. A third method uses the steps of: forming an insulating layer over a silicon substrate; forming an undoped polysilicon layer over the insulating layer; forming a titanium layer over the polysilicon layer; subjecting the titanium layer to a rapid thermal processing cycle; and forming a titanium nitride layer over the thermally processed titanium. Additionally, the resistive structure can be capped using a nitride layer.
Abstract:
An integrated circuit structure contains both highly resistive regions and highly conductive interconnect regions in a single layer of polycrystalline silicon. The resistive regions have a smaller cross section than the interconnect regions as a result of partial oxidation. Their thickness and width are reduced from that of the interconnect regions. The partial oxidation leaves an oxide region, derived from polycrystalline silicon, on both the top and sides of the resistive regions.
Abstract:
In a method of etching a thin film resistor material, such as NiCr or CrSi, and of producing a thin film resistor, a non-photoresist hard mask is deposited on an exposed surface of thin film resistor material, a delineated portion of the hard mask is etched with a hydrogen peroxide etchant that does not affect the thin film resistor material to expose the material therebeneath, and the exposed thin film resistor material is etched with a second etchant that does not affect the hard mask. The second etchant may be sulfuric acid heated to greater than 125.degree. C. for NiCr or a mixture of phosphoric acid, nitric acid and hydrofluoric acid for CrSi. The hard mask preferably comprises TiW.
Abstract:
A device and a method of manufacture of a semiconductor device on a semiconductor substrate including an SRAM cell with a resistor comprises forming a first polycrystalline silicon containing layer on the semiconductor substrate, patterning and etching the first polycrystalline silicon containing layer to form steps on either side thereof, forming a dielectric layer over the first polycrystalline silicon containing layer with the steps on either side of the first polycrystalline silicon containing layer, forming a blanket of a second polycrystalline silicon containing layer extending over the interpolysilicon layer, and ion implanting the second polycrystalline silicon containing layer in a blanket implant of a light dose of dopant including ion implanting resistive regions with far higher resistivity in the regions over the steps.
Abstract:
This invention is a process for making resistor structures having high stability and reliability characteristics. Process parameters are easily modifiable to adjust the resistivity of the structures. A layer of titanium nitride, which may contain certain impurities such as carbon, is deposited via chemical vapor deposition by pyrolization of an organometallic precursor compound of the formula Ti(NR.sub.2).sub.4 either alone or in the presence of either a nitrogen source (e.g. ammonia or nitrogen gas) or an activated species (which may include a halogen, NH.sub.3, or hydrogen radicals, or combinations thereof). The TiN film is then oxidized to create a structure that demonstrates highly stable, highly reliable resistive characteristics, with bulk resistivity values in giga ohm range. In a preferred embodiment of the invention, a predominantly amorphous titanium carbonitride film is deposited on an insulative substrate in a chemical vapor deposition chamber. A layer of titanium is then deposited on top of the titanium carbonitride film. The titanium layer is then patterned with photoresist. The exposed titanium is then etched with a reagent that is selective for titanium over titanium carbonitride (HF, for example, has better than 10:1 selectivity) so that the etch essentially stops when the titanium carbonitride film is exposed. The exposed titanium carbonitride film is then oxidized to achieve the desired resistivity.