Abstract:
A computing device in some examples includes an array of memory cells, such as 8-transisor SRAM cells, in which the read bit-lines are isolated from the nodes storing the memory states such that simultaneous read activation of memory cells sharing a respective read bit-line would not upset the memory state of any of the memory cells. The computing device also includes an output interface having capacitors connected to respective read bit-lines and have capacitance that differ, such as by factors of powers of 2, from each other. The output interface is configured to charge or discharge the capacitors from the respective read bit-lines and to permit the capacitors to share charge with each other to generate an analog output signal, in which the signal from each read bit-line is weighted by the capacitance of the capacitor connected to the read bit-line. The computing device can be used to compute, for example, sum of input weighted by multi-bit weights.
Abstract:
The present disclosure relates to a compensation circuit for compensating for an offset voltage that is present in an output signal output by a force sensor. The compensation circuit comprises: voltage divider circuitry, the voltage divider circuitry configured to receive a bias voltage that is also supplied to the force sensor and to output a control voltage derived from the bias voltage, wherein a component mismatch ratio of the voltage divider circuitry is adjustable to correspond to a component mismatch ratio of the force sensor; current generator circuitry configured to receive the control voltage and to generate a compensating current based on the received control voltage; and amplifier circuitry configured to receive the differential signal output by the force sensor and the compensating current and to output a compensated differential output signal in which the offset voltage is at least partially cancelled.
Abstract:
A digital-to-analog converter is provided. The digital-to-analog converter includes a plurality of digital-to-analog converter cells coupled to an output node of the digital-to-analog converter. At least one of the plurality of digital-to-analog converter cells includes a capacitive element configured to provide an analog output signal of the digital-to-analog converter cell to the output node. Further, the at least one of the plurality of digital-to-analog converter cells includes an inverter circuit coupled to the capacitive element. The inverter circuit is configured to generate an inverter signal for the capacitive element based on an oscillation signal. The at least one of the plurality of digital-to-analog converter cells additionally includes a resistive element coupled to the inverter circuit and the capacitive element. A resistance of the resistive element is at least 50Ω.
Abstract:
An analog-to-digital converter includes a comparator, a capacitive digital-to-analog converter (DAC), and calibration circuitry. The capacitive DAC is coupled to the comparator, and includes a plurality of capacitors. The calibration circuitry is configured to adjust a value of each of the capacitors, and includes binary search circuitry and error correction circuitry. The binary search circuitry applies a binary search over a first number of bits of a multi-bit adjustment value used to adjust the value of one of the capacitors, and averages a first number of comparator output samples to determine each of the first number of bits. The error correction circuitry applies an error correction to the multi-bit adjustment value generated by the binary search, and averages a second number of comparator output samples for the error correction. The second number of comparator output samples is greater than the first number of comparator output samples.
Abstract:
An integrated circuit is provided, which comprises at least one first group each having at least one analog unit; and at least one second group each having at least one electronically settable semi-permanent switching unit coupled to the at least analog unit of the first group for trimming the first group and having at least one many-times-programmable and non-volatile cell (MTP). Each many-times-programmable cell (MTP) comprises at least one MOS transistor having a floating gate (FG) with a tunnel oxide (TO) and a first capacitor coupled to the floating gate (FG). The capacitance of the first capacitor is substantially larger than a gate-channel capacitance of the MOS transistor.
Abstract:
The DA converter according to the present invention includes: first and second analog segment units a plurality of capacitors of sampling capacitor groups charged according to signal levels of digital signals input in a sampling phase; and a calculation unit that outputs an analog signal according to a charged voltage of each capacitor of the sampling capacitor group of the first or second analog segment unit in an integral phase, wherein, when one analog segment unit of the first and second analog segment units is in the sampling phase, the other analog segment unit is in the integral phase.
Abstract:
A circuit contains a successive approximation register and an adjustable capacitor with a set input for adjusting a capacitance value of the adjustable capacitor. Moreover, it comprises a comparator having an input coupled to a terminal of the adjustable capacitor, and with an at least one output, wherein at least one of the outputs of the comparator is coupled to an input of the successive approximation register. The circuit also includes an analog input which is coupled to a terminal of the adjustable capacitor. The circuit may be set into a first operating state and a second operating state, wherein an output of the circuit is controlled in the first operating state by the successive approximation register and is not controlled in the second operating state by the successive approximation register, but by the comparator.
Abstract:
A digital-to analog converter (DAC) of the charge transfer type for use in a sigma delta modulator, includes a capacitor switch unit operable to generate a 4n+1 output levels, comprising: a plurality of second switching units for coupling first terminals of a plurality of reference capacitor pairs with either a positive or a negative reference signal; wherein the second terminals of the plurality of reference capacitor pairs are coupled in parallel, respectively; wherein for even transfers a single switching combination is provided to achieve linearity and wherein for odd transfers an average of different switching combinations is provided to achieve linearity; wherein an even transfer is when an input of the DAC is even and an odd transfer is when an input to the DAC is odd.
Abstract:
The present invention provides a circuit for concurrent integration of multiple differential signals. The circuit comprises a plurality of Stage 1 integration circuits arranged in an array and a plurality of Stage 2 integration circuits arranged in an array. Each of the Stage 1 integration circuits is configured to concurrently integrate an input signal, and to send out a Stage 1 positive signal and a Stage 1 negative signal that is reverse to the Stage 1 positive signal. Each of the Stage 2 integration circuits is configured to integrate a differential signal from a Stage 1 positive signal sent from a corresponding Stage 1 integration circuit and a Stage 1 negative signal sent from another Stage 1 integration circuit next to the corresponding Stage 1 integration circuit to output a Stage 2 signal.
Abstract:
An integrated circuit is provided, which comprises at least one first group each having at least one analog unit; and at least one second group each having at least one electronically settable semi-permanent switching unit coupled to the at least analog unit of the first group for trimming the first group and having at least one many-times-programmable and non-volatile cell (MTP). Each many-times-programmable cell (MTP) comprises at least one MOS transistor having a floating gate (FG) with a tunnel oxide (TO) and a first capacitor coupled to the floating gate (FG). The capacitance of the first capacitor is substantially larger than a gate-channel capacitance of the MOS transistor.