Abstract:
Embodiments disclosed herein may reduce or even eliminate spurs introduced into the signals during analog to digital or digital to analog conversions. The spurs may be introduced by components such as clocks of the converter circuits. In an analog to digital conversion, the input signal may be split into two parts: the first portion passing through a first analog to digital converter (ADC) and an inverted second portion passing through a second ADC. A digital subtractor may subtract the output of the second ADC from the output of the first ADC converter thereby reducing the spurs. In digital to analog conversion, a digital input is passed through a first digital to analog converter (DAC) and an inverted digital input is passed through a second DAC. The output of the second DAC is inverted and combined with the output of the first DAC to reduce the spurs.
Abstract:
This application discloses a temperature feedback control apparatus, method. The method includes two electric switches, a feedback control unit and an optical component. A first electric switch is configured to control that only a first channel of at least two channels that correspond to the first electric switch is conducted at a moment, to feed back an optical signal of a target optical component connected to the first channel to the feedback control unit. The feedback control unit is configured to calculate temperature of the corresponding optical component based on an electrical signal converted from the optical signal, to obtain a control signal. The second electric switch is configured to control, when the first channel is conducted, that only the second channel is conducted, to transmit the control signal to the target optical component to adjust its temperature. The optical component connects to both the first and second channels.
Abstract:
Methods and systems are provided for dynamic power switching in current-steering digital-to-analog converters (DACs). A DAC circuit may be configured to apply digital-to-analog conversions based on current steering, and to particularly incorporate use of dynamic power switching during conversions. The DAC circuit may comprise a main section, which may connect a main supply voltage to a main current source. The main section may comprise a positive-side branch and a negative-side branch, which may be configured to steer positive-side and negative-side currents, such as in a differential manner, to effectuate the conversions. The dynamic power switching may be applied, for example, via a secondary section connecting a main current source in the DAC circuit to a secondary supply voltage. The secondary supply voltage may be configured such that it may be less than the main supply voltage used in driving the current steering in the DAC circuit.
Abstract:
Apparatus and methods for reducing noise and distortion in current digital-to-analog converters (IDACs). Compensating capacitors may be connected to current sources in an IDAC. The compensating capacitors may be driven with signals 5 derived from the output of the IDAC to cancel transient current spikes that would otherwise occur on the output of the IDAC.
Abstract:
A conversion circuit is disclosed. In one aspect, the conversion circuit includes a first input terminal for receiving a digital signal. The conversion circuit includes a second input terminal for receiving a bias voltage signal. The conversion circuit includes an output terminal for outputting a current. The conversion circuit includes a first and a second switch transistor connected to the first input terminal for receiving the digital signal. The conversion circuit includes a first and a second current source transistor connected to the second input terminal for receiving the bias voltage signal. The conversion circuit further includes a first branch, wherein the first switch transistor is connected to the output terminal via the first current source transistor. The conversion circuit further includes a second branch, wherein the second current source transistor is connected to the output terminal via the second switch transistor.
Abstract:
Mechanisms for generating dummy signals for use in reducing data dependent noise in DACs are disclosed. Disclosed mechanisms differentiate between odd and even bits of a digital data signal to be converted and generate dummy signals by inverting some of these bits and leaving other bits as they are (i.e. including them in their non-inverted form). One dummy signal is generated as a sequence of bits that is the same as a sequence of bits of a data signal except that every odd bit of the data signal is inverted. An alternative dummy signal is generated as a sequence of bits that is the same as a sequence of bits of a data signal except that every even bit is inverted. Generating dummy signals in this manner eliminates the need to use calibration, feedback, or transition detectors, advantageously resulting in increased timing margins and substantial power savings over existing implementations.
Abstract:
An embodiment circuit includes a first reference source configured to provide a first reference signal to an analog-to-digital convertor (ADC). The circuit also includes a filter coupled to an output of the first reference source and configured to filter the first reference signal to produce a filtered first reference signal. The circuit further includes a second reference source coupled to an output of the filter. The second reference source is configured to provide a second reference signal to the ADC, and the second reference signal is generated based on the filtered first reference signal.
Abstract:
An analog to digital converter (ADC) includes a comparator and a plurality of capacitor pairs coupled between first and second inputs the comparator, where each one of the capacitor pairs corresponds to one of a plurality of cycles used by the ADC to generate a digital value representing a sampled analog voltage. The ADC also includes a voltage detection circuit and a state machine that is configured to, upon determining during a first cycle that the sampled voltage across the first and second inputs satisfies a threshold, maintaining a first pair of the plurality of capacitor pairs in a default state such that the sampled analog voltage is unchanged. Otherwise, the state machine is configured to switch the first pair of the plurality of capacitor pairs to change the sampled analog voltage.
Abstract:
Methods and systems for analog-to-digital conversion applicable to an image sensor, such as a CMOS image sensor, in which an ADC comprises built-in redundancy such that the ADC can start its conversion cycle before the ADC input settles to a desired resolution and the ADC can yet accurately convert the ADC input to a digital value with the desired resolution. In a CMOS image sensor, such an ADC configuration enables the pixel readout time to overlap with the ADC conversion time, reducing the total time needed to convert the pixel signal value to a digital value with the desired resolution.
Abstract:
A conversion circuit is disclosed. In one aspect, the conversion circuit includes a first input terminal for receiving a digital signal. The conversion circuit includes a second input terminal for receiving a bias voltage signal. The conversion circuit includes an output terminal for outputting a current. The conversion circuit includes a first and a second switch transistor connected to the first input terminal for receiving the digital signal. The conversion circuit includes a first and a second current source transistor connected to the second input terminal for receiving the bias voltage signal. The conversion circuit further includes a first branch, wherein the first switch transistor is connected to the output terminal via the first current source transistor. The conversion circuit further includes a second branch, wherein the second current source transistor is connected to the output terminal via the second switch transistor.