Abstract:
A notch filter includes an inductor coupled between an input node and an output node, and a dual-resonator structure coupled between the input node, the output node, and ground.
Abstract:
A bulk acoustic wave (BAW) resonator includes: an acoustic reflector disposed in a substrate; a lower electrode disposed over the acoustic reflector; a piezoelectric layer disposed over the lower electrode; and an upper electrode disposed over the piezoelectric layer. A contacting overlap of the lower electrode, the piezoelectric layer and the upper electrode over the acoustic reflector comprising an active area of the BAW resonator. An opening exists in the upper electrode in a region of the BAW resonator susceptible to unacceptable overheating.
Abstract:
An acoustic structure, comprising at least one acoustic resonator exhibiting at least one resonant frequency in a band of operating frequencies and an integrated capacitor, further comprises: a stack of layers, comprising at least one active layer of piezoelectric material or of ferroelectric material; the resonator being frequency tunable and being produced by a first subset of layers of the stack comprising the at least one active layer and at least two electrodes; the integrated capacitor being produced by a second subset of layers comprising the active layer and at least two electrodes; the first and second subsets of layers being distinguished by a modification of layers so as to exhibit different resonant frequencies.
Abstract:
A bulk acoustic wave resonator and a filter in which partial thicknesses of protection layers or reflection layers thereof are differently formed are provided. The bulk acoustic wave resonator includes a bulk acoustic wave resonating part comprising a piezoelectric layer, and a reflection layer configured to reflect waves of a resonance frequency generated by the piezoelectric layer based on a signal applied to the bulk acoustic wave resonating part. A thickness of a portion of the reflection layer is different from a thickness of a remaining portion thereof.
Abstract:
A MEMS component includes a lower electrode. The MEMS component also includes an upper electrode. The upper electrode overlies the lower electrode. The MEMS component also includes a first piezoelectric layer between the lower electrode and the upper electrode. The first piezoelectric layer has a first piezoelectric material comprising AlN and Sc.
Abstract:
A method of manufacturing a stacked thin film piezoelectric filter includes the steps of forming a lower thin film piezoelectric resonator on a substrate, measuring a frequency of the lower thin film piezoelectric resonator and adjusting the frequency, forming an acoustic coupling layer on the lower thin film piezoelectric resonator whose frequency has been adjusted, forming the stacked thin film piezoelectric filter by forming an upper thin film piezoelectric resonator on the acoustic coupling layer, and measuring a frequency of the upper thin film piezoelectric resonator and adjusting the frequency.
Abstract:
A guided acoustic wave resonant device is provided. The device comprises at least two filters (F1, . . . , Fi, . . . , FN), each filter comprising at least two acoustic wave resonators (R11-R12, . . . , Ri1-Ri2, . . . , RN1-RN2), each filter having a useful frequency band (BF1, . . . , BFi, . . . , BFN) centered on a central frequency (f1, . . . , fi, . . . , fN), each resonator comprising at least one suite of inter-digitated upper electrodes exhibiting a periodic structure of period (Λij) and a layer of piezoelectric material, each resonator having a coupling coefficient (k21, k22, . . . , k2n) and a resonant frequency (fr1, . . . , fr2, . . . , fN), wherein at least one of the resonators comprises a differentiation layer (CDfi) making it possible in combination with the period of the inter-digitated electrodes to modify the coupling coefficient of the said resonator, the useful band and the central frequency being determined by the resonant frequencies and the coupling coefficients of the resonators which are adapted so as to have a determined useful bandwidth.
Abstract:
A tunable acoustic resonator device has a piezoelectric medium as a first thin film layer and a tunable crystal medium as a second thin film layer. The tunable crystal medium has a first acoustic behavior over an operating temperature range under a condition of relatively low applied stress and a second acoustic behavior under a condition of relatively high applied stress. The acoustic behaviors are substantially different and, consequently, the different levels of applied stress are used to tune the acoustic resonator device. Compared with the tunable resonator device consisting of only tunable crystal medium, a device having both the piezoelectric and tunable crystal medium has advantages such as larger inherent bandwidth and less nonlinearity with AC signals. The device also requires a smaller applied stress (i.e. bias voltage) to achieve the required frequency tuning.
Abstract:
A bulk acoustic wave (BAW) structure includes a first electrode disposed over a substrate, a piezoelectric layer disposed over the first electrode, and a second electrode disposed over the first piezoelectric layer. A bridge is formed within the piezoelectric layer, where the bridge is surrounded by piezoelectric material of the piezoelectric layer.
Abstract:
Planarization methods for maintaining planar surfaces in the fabrication of such devices as BAW devices and capacitors on a planar or planarized substrate are described. In accordance with the method, a metal layer is deposited and patterned, and an oxide layer is deposited using a high density plasma chemical vapor deposition (HDP CVD) process to a thickness equal to the thickness of the metal layer. The HDP CVD process provides an oxide layer on the patterned metal tapering upward from the edge of the patterned metal layer. Then, after masking and etching the oxide layer from the patterned metal layer, the patterned metal layer and surrounding oxide layer form a substantially planar layer, interrupted by small remaining oxide protrusions at the edges of the patterned layer. These small remaining oxide protrusions may be too small to significantly disturb the flatness of a further oxide or other layer or they may be further mitigated by the application of another HDP CVD oxide film.