Abstract:
A method of forming a pair of edge-emitting lasers is provided. The method includes forming a mesa from a substrate, forming a cover layer on the substrate around the mesa, and forming a first barrier layer on each of opposite sidewalls of the mesa. The method further includes forming a quantum well layer on each of the barrier layers, forming a second barrier layer on each of the quantum well layers, and forming a cladding layer on each of the second barrier layers.
Abstract:
A broad area quantum cascade laser subject to having high order transverse optical modes during operation includes a laser cavity at least partially enclosed by walls, and a perturbation in the laser cavity extending from one or more of the walls. The perturbation may have a shape and a size sufficient to suppress high order transverse optical modes during operation of the broad area quantum cascade laser, whereby a fundamental transverse optical mode is selected over the high order transverse optical modes. As a result, the fundamental transverse mode operation in broad-area quantum cascade lasers can be regained, when it could not otherwise be without such a perturbation.
Abstract:
III-V lasers integrated with silicon photonic circuits and methods for making the same include a three-layer semiconductor stack formed from III-V semiconductors on a substrate, where a middle layer has a lower bandgap than a top layer and a bottom layer; a mirror region monolithically formed at a first end of the stack, configured to reflect emitted light in the direction of the stack; and a waveguide region monolithically formed at a second end of the stack, configured to transmit emitted light.
Abstract:
A broad area semiconductor laser device includes a waveguide region and a filter region. The waveguide region includes an active region into which current is injected, and a cladding region that sandwiches the active region. The active region either protrudes or is recessed with respect to the filter region, so as to promote the divergence of higher order modes in the filter region.
Abstract:
Methods, systems, and apparatus, including an optical receiver including a laser including a gain section; and a first tunable reflector configured to output a reference signal; a first coupler formed over the substrate; a shutter variable optical attenuator formed over the substrate, the shutter variable optical attenuator including an input port configured to receive the first portion of the reference signal from the laser; and an output port configured to provide or to block, based on a control signal, the first portion of the reference signal from the laser; and a second coupler including a first port configured to receive the first portion of the reference signal from the shutter variable optical attenuator; and a second port configured to (i) provide the first portion of the reference signal from the shutter variable optical attenuator to an optical analyzer or (ii) receive a data signal from a transmitter.
Abstract:
An optical device includes an active layer disposed over a semiconductor substrate, a diffraction grating disposed over the active layer, a clad layer partly disposed over the diffraction grating, at least one first burying material layer disposed beside side surfaces of end portions of the clad layer over the diffraction grating, and at least one second burying material layer disposed beside side surfaces of a center portion of the clad layer over the diffraction grating. A refractive index of the at least one first burying material layer is different from a refractive index of the at least are second burying material layer.
Abstract:
A laser light source comprises, in particular, a semiconductor layer sequence (10) having an active region (45) and a radiation coupling-out area (12) having a first partial region (121) and a second partial region (122) different than the latter, and a filter structure (5), wherein the active region (45) generates, during operation, coherent first electromagnetic radiation (51) having a first wavelength range and incoherent second electromagnetic radiation (52) having a second wavelength range, the coherent first electromagnetic radiation (51) is emitted by the first partial region (121) along an emission direction (90), the incoherent second electromagnetic radiation (52) is emitted by the first partial region (121) and by the second partial region (122), the second wavelength range comprises the first wavelength range, and the filter structure (5) at least partly attenuates the incoherent second electromagnetic radiation (52) emitted by the active region along the emission direction (90).
Abstract:
A semiconductor laser light source comprising an edge-emitting semiconductor body (10) is provided. The semiconductor body (10) contains a semiconductor layer stack (110) having an n-type layer (111), an active layer (112) and a p-type layer (113) which is formed for generating electromagnetic radiation which comprises a coherent portion (21). The semiconductor laser light source is formed for decoupling the coherent portion (21) of the electromagnetic radiation from a decoupling surface (101) of the semiconductor body (10) which is inclined with respect to the active layer (112). The semiconductor body (10) comprises a further external surface (102A, 102B, 102C) which is inclined with respect to the decoupling surface (101) and has at least one light-diffusing sub-region (12, 12A, 12B, 12C, 120A, 120B) which is provided in order to direct a portion of the electromagnetic radiation generated by the semiconductor layer stack (110) in the direction towards the further external surface (102A, 102B, 102C).
Abstract:
A method proposed for manufacturing a radiation-emitting component in which a field distribution of a near field in a direction perpendicular to a main emission axis of the component is specified. From the field distribution of the near field, an index of refraction profile along this direction is determined. A structure is determined for the component such that the component will have the previously determined index of refraction profile. The component is constructed according to the previously determined structure. A radiation-emitting component is also disclosed.
Abstract:
An edge-emitting optical semiconductor structure has a substrate, an active multiple quantum well (MQW) region formed on the substrate, and a ridge waveguide extending between first and second etched end facets. The first etched end facet is disposed in a first window, while the second etched end facet is disposed in a second window. The first etched end facet extends between a pair of alcoves in the first window, and the second etched end facet extends between a pair of alcoves in the second window. An integrated device in which two such structures are provided has an H-shaped window where the two structures adjoin each other. The structure can be fabricated using a process that involves a first mask to form the ridge waveguide and then a second mask and an etching process to form the windows.