Abstract:
An electrochemical device (100) includes an ion exchange membrane (120), a first electrode (110) adjacent to a first side thereof and a second electrode (130) adjacent to a second side thereof. At least one of the first electrode (110) and the second electrode (130) includes a current collector layer (112, 132) and a catalyzing layer (114, 134) applied thereto. The catalyzing layer (114, 134) includes an ion-conducting polymer (116), a plurality of electroactive catalyst particles (115, 118) and an adhesive (118) that binds the polymer (116), the catalyst particles (115, 118) and the current collector layer together (112, 132). In a method of making an electrode, an ion-conducting polymer, a plurality of electroactive catalyst particles and an adhesive are mixed in a solvent, which is applied to a current collector layer. The solvent is evaporated so that the adhesive binds the polymer and the catalyst particles to the current collector.
Abstract:
The invention features an electrochemical cell having an anode and a cathode; wherein at least one of the anode and cathode includes a solid ionically conducting polymer material that can ionically conduct hydroxyl ions.
Abstract:
Provided herein are ionically conductive solid-state compositions that include ionically conductive inorganic particles in a matrix of an organic material. The resulting composite material has high ionic conductivity and mechanical properties that facilitate processing. In particular embodiments, the ionically conductive solid-state compositions are compliant and may be cast as films. In some embodiments of the present invention, solid-state electrolytes including the ionically conductive solid-state compositions are provided. In some embodiments of the present invention, electrodes including the ionically conductive solid-state compositions are provided. The present invention further includes embodiments that are directed to methods of manufacturing the ionically conductive solid-state compositions and batteries incorporating the ionically conductive solid-state compositions.
Abstract:
A battery and a method of constructing a battery are disclosed in which a first conductive substrate portion has a first face and a second conductive substrate portion has a second face opposed to the first face. A first electrode material is disposed in electrical contact with the first face, an electrolyte material is disposed in contact with the first electrode material, a second electrode material is disposed in contact with the electrolyte material, and a conductive tab disposed in contact with the second electrode material. The first conductive substrate portion, the first electrode material, and the conductive tab extend outward beyond a particular edge of the second conductive substrate portion.
Abstract:
A lithium air battery includes: a lithium negative electrode; a positive electrode; and an ion conductive oxygen-blocking film which is disposed on the lithium negative electrode, wherein the ion conductive oxygen-blocking film includes a first polymer including a polyvinyl alcohol or a polyvinyl alcohol blend, and a lithium salt, and wherein the ion conductive oxygen-blocking film has an oxygen transmission rate of about 10 milliliters per square meter per day to about 10,000 milliliters per square meter per day. Also a method of manufacturing a lithium air battery is disclosed.
Abstract:
A battery includes a first conductive substrate portion having a first face, and a second conductive substrate portion having a second face opposed to the first face. Each of the first and second faces has a perimeter portion and an interior portion inside the perimeter portion. A first electrode material of the battery is disposed in contact with the interior portion of at least one of the first and second faces, and a jettable electrolyte material disposed in contact with the first electrode material. A second electrode material is disposed in contact with the electrolyte material, and a conductive tab is disposed in contact with the second electrode material. The conductive tab extends outwardly from the interior region beyond the perimeter portion of at least one of the first and second faces.
Abstract:
A cell is provided. The cell includes a cell element including a positive electrode, a negative electrode, an electrolyte and a laminate film including an exterior layer, a metal layer, an interior layer, and a welded layer formed of the interior layer; wherein a thickness of the welded layer is larger than 5 μm in a flat portion of the interior layer, wherein the welded layer increases in thickness from the flat portion to an end portion of the welded layer, and wherein when a thickness of the laminate film is t, a thickness of the interior layer is p and a thickness of the laminate film in the welded layer is t1, a following equation is satisfied: t×2−p×2+5
Abstract:
A solid, ionically conductive, non-electrically conducting polymer material with a plurality of monomers and a plurality of charge transfer complexes, wherein each charge transfer complex is positioned on a monomer.
Abstract:
Disclosed are ionically conductive membranes for protection of active metal anodes and methods for their fabrication. The membranes may be incorporated in active metal negative electrode (anode) structures and battery cells. In accordance with the invention, the membrane has the desired properties of high overall ionic conductivity and chemical stability towards the anode, the cathode and ambient conditions encountered in battery manufacturing. The membrane is capable of protecting an active metal anode from deleterious reaction with other battery components or ambient conditions while providing a high level of ionic conductivity to facilitate manufacture and/or enhance performance of a battery cell in which the membrane is incorporated.