Abstract:
The present invention provides a MEMS structure comprising confined sacrificial oxide layer and a bonded Si layer. Polysilicon stack is used to fill aligned oxide openings and MEMS vias on the sacrificial layer and the bonded Si layer respectively. To increase the design flexibility, some conductive polysilicon layer can be further deployed underneath the bonded Si layer to form the functional sensing electrodes or wiring interconnects. The MEMS structure can be further bonded to a metallic layer on top of the Si layer and the polysilicon stack.
Abstract:
Disclosed herein is a semiconductor apparatus including: a first semiconductor part including a first wiring; a second semiconductor part which is adhered to the first semiconductor part and which includes a second wiring electrically connected to the first wiring; and a metallic oxide formed by a reaction between oxygen and a metallic material which reacts with oxygen more easily than hydrogen does, the metallic oxide having been diffused into a region which includes a joint interface between the first wiring and the second wiring and the inside of at least one of the first wiring and the second wiring.
Abstract:
The present invention provides a MEMS structure comprising confined sacrificial oxide layer and a bonded Si layer. Polysilicon stack is used to fill aligned oxide openings and MEMS vias on the sacrificial layer and the bonded Si layer respectively. To increase the design flexibility, some conductive polysilicon layer can be further deployed underneath the bonded Si layer to form the functional sensing electrodes or wiring interconnects. The MEMS structure can be further bonded to a metallic layer on top of the Si layer and the polysilicon stack.
Abstract:
A method includes forming a first connector and a second connector over a first wafer and a second wafer, respectively, in which each of the first and second connectors are formed by forming an opening in a dielectric layer; depositing a first metal layer in the opening, in which the first metal layer has a nano-twinned structure with (111) orientation; and depositing a second metal layer over the first metal layer, the second metal layer and the first metal layer being made of different materials, in which the second metal layer has a nano-twinned structure with (111) orientation; attaching the first wafer to the second wafer, such that that the second metal layer of the first connector on the first wafer is in contact with the second metal layer of the second connector on the second wafer; and performing a thermo-compression process to bond the first and second wafers.
Abstract:
The present invention provides a MEMS structure comprising confined sacrificial oxide layer and a bonded Si layer. Polysilicon stack is used to fill aligned oxide openings and MEMS vias on the sacrificial layer and the bonded Si layer respectively. To increase the design flexibility, some conductive polysilicon layer can be further deployed underneath the bonded Si layer to form the functional sensing electrodes or wiring interconnects. The MEMS structure can be further bonded to a metallic layer on top of the Si layer and the polysilicon stack.
Abstract:
A semiconductor apparatus, electronic device, and method of manufacturing the semiconductor apparatus are disclosed. In one example, the semiconductor apparatus comprises a first semiconductor part that includes a first wiring, and a second semiconductor part that is adhered to the first semiconductor part and which includes a second wiring electrically connected to the first wiring. A metallic oxide is formed in at least one of the first wiring and the second wiring.
Abstract:
The present disclosure relates to a method for manufacturing a semiconductor device. The method includes providing a first electronic component including a first metal contact and a second electronic component including a second metal contact, changing a lattice of the first metal contact, and bonding the first metal contact to the second metal contact under a predetermined pressure and a predetermined temperature.
Abstract:
A semiconductor apparatus, electronic device, and method of manufacturing the semiconductor apparatus are disclosed. In one example, the semiconductor apparatus comprises a first semiconductor part that includes a first wiring, and a second semiconductor part that is adhered to the first semiconductor part and which includes a second wiring electrically connected to the first wiring. A metallic oxide is formed in at least one of the first wiring and the second wiring.
Abstract:
The present invention provides a MEMS structure comprising confined sacrificial oxide layer and a bonded Si layer. Polysilicon stack is used to fill aligned oxide openings and MEMS vias on the sacrificial layer and the bonded Si layer respectively. To increase the design flexibility, some conductive polysilicon layer can be further deployed underneath the bonded Si layer to form the functional sensing electrodes or wiring interconnects. The MEMS structure can be further bonded to a metallic layer on top of the Si layer and the polysilicon stack.
Abstract:
Disclosed herein is a semiconductor apparatus including: a first semiconductor part including a first wiring; a second semiconductor part which is adhered to the first semiconductor part and which includes a second wiring electrically connected to the first wiring; and a metallic oxide formed by a reaction between oxygen and a metallic material which reacts with oxygen more easily than hydrogen does, the metallic oxide having been diffused into a region which includes a joint interface between the first wiring and the second wiring and the inside of at least one of the first wiring and the second wiring.