Abstract:
An internal combustion engine system includes an internal combustion engine, a first turbine unit receiving exhaust gases from the internal combustion engine, the turbine unit having a compressor for compressing intake air and feeding the intake air by an air intake line to the internal combustion engine, and an exhaust gas recirculation line connecting the air intake line with an exhaust as line of the internal combustion engine at a position upstream the first turbine unit. A bypass line connects the exhaust gas recirculation line to the exhaust gas line at a position downstream of the turbine unit, the bypass line having an arrangement for controlling the exhaust gas flow from the exhaust gas recirculation line to the exhaust gas line.
Abstract:
The present invention concerns an engine comprising at least one working cylinder (1) which has valves (16) and/or nozzles for the feed or injection of fuel and air and for the outlet of exhaust gas and a method of operating such an engine. In order to provide an engine and a corresponding method by which the fuel is used considerably more efficiently without excessively high temperatures occurring, which entail the risk of misfires, it is proposed according to the invention that each working cylinder (1) is coupled to a subsequent cylinder (11) which is driven by the pressure of hot exhaust gases from the working cylinder (1) and which is so designed and arranged that on the other hand it feeds pre-compressed combustion air to the working cylinder (1), a cooling device (17) which cools the pre-compressed gas, a device (9, 7) for transferring the cooled pre-compressed gas into the working cylinder (1) and a transfer valve (16) which for a further stroke of the subsequent cylinder (1) transfers exhaust gas under pressure from the working cylinder (1) into the subsequent cylinder (11).
Abstract:
An engine assembly having an internal combustion engine, a turbine module including a turbine casing, a support casing rigidly connecting the turbine casing to a remainder of the assembly, and an inlet scroll connected to the turbine casing without any direct rigid connection to the support casing. The inlet scroll includes an inlet pipe for each engine exhaust port. An exhaust pipe is provided for each exhaust port, connected to and providing fluid communication between the respective exhaust port and inlet pipe. The exhaust pipe is movable relative to at least one of the exhaust port and the inlet pipe at a corresponding connection therewith. One of the exhaust and inlet pipes floatingly extends through an opening defined in the support casing. The assembly may be a compound engine assembly.
Abstract:
A power system includes an engine including an exhaust line, a turbine in the exhaust line, a bypass line connected to the exhaust line upstream of the turbine and comprising a controllable bypass valve, and a controller arranged to control opening of the bypass valve to bypass the turbine when, for example, the engine is operated such that power is transmitted from the crankshaft to the turbine shaft, and/or at least one of an engine load, an engine speed, and an exhaust line pressure are below predetermined levels. A method of operating a power system is also disclosed.
Abstract:
Methods and systems for delivering powertrain torque of a hybrid vehicle are disclosed. In one example, torque is supplied to vehicle wheels from a piston engine, an electric machine, and a turbine engine via a planetary gear set. The planetary gear set may be configured with at least one sun gear and two ring gears.
Abstract:
The present disclosure relates to an auxiliary drive of a combustion machine, in particular of a combustion machine of a utility vehicle. The auxiliary drive includes a shaft which is operatively connected to a crankshaft of the combustion machine and which has two shaft ends which are designed in each case for connection to a power-outputting and/or power-receiving machine arranged outside the crankcase.
Abstract:
Disclosed is a power system having a turbocharger, a VG turbocompound turbine, and a controller. The turbocharger has a turbine coupled to a compressor, and the VG turbocompound turbine positioned downstream of the turbine relative to a direction of a flow of an exhaust gas flowing through the turbine and the VG turbocompound turbine. The controller sends a signal to adjust a geometry of the VG turbocompound turbine so as to adjust a boost level being provided by the turbocharger.
Abstract:
A turbocompound unit includes a bearing housing and a turbine shaft being rotatably supported in the bearing housing, wherein one end of the turbine shaft is provided with a turbine wheel. The turbocompound unit further includes a diffuser duct in which the turbine wheel is arranged to rotate, an exhaust collector extending from the diffuser duct to an exhaust outlet, and a sealing arrangement positioned in the vicinity of the turbine wheel fir preventing oil from escaping from the bearing housing to the diffuser duct. The exhaust collector forms part of a butler gas duct that is arranged to supply exhaust gas from the exhaust collector to the sealing arrangement for pressurizing the sealing arrangement.
Abstract:
A four-cycle internal combustion engine has a single or multi-stage pre-cooled compression, which allows the temperature and pressure of intake air to the combustion cylinders to be tightly controlled, so that a much higher compression ratio and pre-ignition compression pressure can be achieved without approaching the air/fuel mixture auto-ignition threshold. The minimal threshold pressure of air intake is determined to be >1.8 Bars at sea level and a minimal temperature drop of at least 50° C. at the heat exchanger air cooling radiator. Because this design can effectively regulate and set the maximum pre-ignition temperature of the fuel-air mixture, it can combust virtually any type of liquid hydrocarbon fuel without knocking. This four-cycle engine, due to its higher compression ratio, generates power equivalent to or greater than a standard four-cycle engine in a smaller and lighter engine and at a higher efficiency.
Abstract:
A compound engine assembly having an engine core including at least one internal combustion engine in driving engagement with an engine shaft, a compressor having an outlet in fluid communication with an inlet of the engine core and including at least one rotor rotatable about an axis coaxial with the engine shaft, the engine shaft in driving engagement with the compressor rotor, and a turbine section having an inlet in fluid communication with an outlet of the engine core and including at least one rotor engaged on a rotatable turbine shaft, the turbine shaft configured to compound power with the engine shaft. The turbine and engine shafts are parallel to and radially offset from one another, and the turbine shaft and the axis of the compressor rotor are parallel to and radially offset from one another. A method of driving a rotatable load of an aircraft is also discussed.