Abstract:
An integrated liquidjet system capable of stripping, prepping and coating a part includes a cell defining an enclosure, a jig for holding the part inside the cell, an ultrasonic nozzle having an ultrasonic transducer for generating a pulsed liquidjet, a coating particle source for supplying coating particles to the nozzle, a pressurized liquid source for supplying the nozzle with a pressurized liquid to enable the nozzle to generate the pulsed liquidjet to sequentially strip, prep and coat the part, a high-voltage electrode and a ground electrode inside the nozzle for charging the coating particles, and a human-machine interface external to the cell for receiving user commands and for controlling the pulsed liquidjet exiting from the nozzle in response to the user commands.
Abstract:
The present invention provides a plating method capable of easily performing various decorative plating processes. The plating method includes a bulge forming process of forming a bulge on an object to be plated by ejecting ink drops of first UV-curable ink from an inkjet head such that the ejected ink drops land on the object, and a plating process of plating the object having the bulge formed thereon, after the bulge forming process. Also, in the bulge forming process, the bulge is formed such that a second surface of the bulge to be plated has surface roughness different from that of a first surface of the object to be plated.
Abstract:
On at least the edge portion (9e) of the lip portion (9) of a T-die (1), a cladding layer (10) is provided. The cladding layer is formed by laser build-up welding to a base material with a powder of a corrosion resistant and wear resistant alloy comprising a nickel-based alloy or a cobalt-based alloy. The cladding layer has a metallographic structure in which metal borides are dispersed in a binder phase. The lip portion has high quality and has high durability. The manufacturing costs of the T-die can also be kept relatively low.
Abstract:
Provided is a steam turbine and a surface treatment method for the steam turbine with which high resistance to environmentally assisted cracking is achieved while also inhibiting the decrease in the effect of compressive residual stress given by shot peening and the complication of the process/treatment. A compressive stress layer to which compressive residual stress has been given by means of shot peening is formed at the surface of a structure (engagement part between a rotor and rotor blades) constituting the steam turbine. Further, a coating layer is formed to cover the surface of the compressive stress layer by means of plating.
Abstract:
The present invention develops a method of treating metallic or plastic substrates to form minor finish. After several pre-treatment steps to modify the surface situation of the substrate, whether for metallic or plastic material, to enhance the adhesion of above coating layers, a layer of minor finish will be applied, with the function of decoration shown with metal appearance and glossy. A changeable topcoat will be coated to protect below minor finish layer and achieve colorful decoration. All materials and processing steps are environmentally friendly, and involved without expensive facilities.
Abstract:
A mechanical component for an internal combustion engine includes a mechanical component body made of one of aluminum and aluminum alloy and used for the internal combustion engine, a nickel plating layer formed to cover a surface of a predetermined portion of the mechanical component body, and a reforming layer formed between the surface of the predetermined portion of the mechanical component body and the nickel plating layer.
Abstract:
The present invention relates to a multi-layer material comprising a metal or metal alloy substrate, the metal or alloy substrate being coated with an intermediate layer comprising at least one ceramic or crystalline, or partially crystalline, structure, including a metal or a metal alloy, said intermediate layer being coated with a layer of calcium phosphate having a cellular nanometric structure, and uses thereof.The present invention relates to the method for preparing such a material by autocatalytic deposition of a layer of calcium phosphate comprising a cellular nanometric surface structure.
Abstract:
A method of making a composite gas separation module by providing a porous support material having deposited thereon a metal membrane layer, by imposing upon the surface of the metal membrane layer certain surface characteristics including an abrasion pattern and a relatively high surface roughness that provides for surface activation that enhances the placement thereon of a subsequent metal membrane layer without the use of a chemical activating solution. The composite gas separation module is useful in the separation of hydrogen from hydrogen-containing gas streams.
Abstract:
A method of selectively and electrolessly depositing a metal onto a substrate having a metallic microstructured surface is disclosed. The method includes forming a self-assembled monolayer on the metallic microstructured surface, exposing the self-assembled monolayer to an electroless plating solution including a soluble form of a deposit metal, and depositing electrolessly the deposit metal selectively on the metallic microstructured surface. Article formed from this method are also disclosed.
Abstract:
A method for producing a substrate with black film is provided, comprising forming a dull plating film on a surface of a substrate, forming an electroless plating film containing a sulfur or nitrogen compound on the surface of the plating film, and forming a black film on the surface of the electroless plating film. This substrate with black film is used for devices which generate heat due to sliding or friction or generate/accumulate heat due to a chemical reaction, such as semiconductor device, vacuum device, rotating device and heat exchanger, and the black film has excellent heat radiating properties with an emissivity of 0.8 or more. Also, this substrate with black film has high corrosion resistance against halogen-type corrosive gases and exhibits excellent release gas properties and corrosion resistance in vacuum devices.