Abstract:
A method of making a coating solution includes the steps of polymerising an initial monomer feed comprising an N-vinyl pyrrolidone and an acrylate, preferably methacrylate, salt in water to synthesise a copolymer thereof, acidifying the resulting copolymer-water mixture to give free carboxylic acid groups along the copolymer backbone, diluting the aqueous solution down with alcohol, and adding a cross-linking agent which is capable of reacting with the carboxylic acid groups and curing the copolymer at a later stage after the coating solution has been applied to a substrate and the copolymer coated thereon. Also disclosed are a coating solution in storage, a method of coating a substrate which is on, or is part of, a medical device or other article, a substrate, article or medical device having a coating so applied, and a coated medical device packaged in a hydration solution. The aqueous-alcoholic coating solution may be stored for an extended period, suitably for at least one month and desirably for substantially longer, without deteriorating.
Abstract:
Drilling fluid compositions include a base fluid, at least one additive chosen from an emulsifier, weighting material, fluid-loss additive, viscosifier, or alkali compound, and from 0.1 wt. % to 1 wt. %, based on total weight of the drilling fluid composition, of an ethoxylated alcohol compound having the formula R—(OCH2CH2)7—OH, in which R is a saturated or unsaturated, linear or branched hydrocarbyl group having from 8 to 20 carbon atoms. The base fluid may be an aqueous base fluid. Methods for drilling a subterranean well include operating a drill in a wellbore in the presence of a drilling fluid composition including the base fluid, the additive, and the ethoxylated alcohol compound.
Abstract:
The invention relates to a chain guide, respectively a chain tensioner for use in a lubricated sliding system, comprising a surface layer or bearing or comprising a sliding element comprising a surface layer, the surface layer being mainly made of a polymeric material containing a matrix polymer and optionally other components dispersed in said matrix polymer, wherein the matrix polymer consists of a semi-crystalline polyamide (SCPA) having a tensile modulus at 140° C. of at least 800 MPa (measured by the method according to ISO 527-1A). The invention also relates to a power train drive system comprising an engine, a transmission differential and a drive shaft system, a drive chain and a plastic component comprising a sliding element in contact with the lubricated drive chain, wherein the chain guide, the chain tensioner, respectively the sliding element has a coefficient of friction (CoF), measured in lubrication oil at 140° C. at a nominal contact pressure of 1 MPa and a speed of 1 m/s, of at most 0.07.
Abstract:
The invention relates to a chain guide, respectively a chain tensioner for use in a lubricated sliding system, comprising a surface layer or bearing or comprising a sliding element comprising a surface layer, the surface layer being mainly made of a polymeric material containing a matrix polymer and optionally other components dispersed in said matrix polymer, wherein the matrix polymer consists of a semi-crystalline polyamide (SCPA) having a tensile modulus at 140° C. of at least 800 MPa (measured by the method according to ISO 527-1A). The invention also relates to a power train drive system comprising an engine, a transmission differential and a drive shaft system, a drive chain and a plastic component comprising a sliding element in contact with the lubricated drive chain, wherein the chain guide, the chain tensioner, respectively the sliding element has a coefficient of friction (Co F), measured in lubrication oil at 140° C. at a nominal contact pressure of 1 MPa and a speed of 1 m/s, of at most 0.07.
Abstract:
An automotive engine oil and/or fuel comprising a base stock and an organic polymeric friction reducing additive is claimed. A method of reducing friction in an automotive engine oil and/or fuel by the addition of the organic polymeric friction reducing additive to the base stock is also claimed.
Abstract:
The present invention relates to formulations comprising an inversion facilitator additive and an active emulsion polymer, and methods for their use. The formulation can comprise a water-in-oil emulsion having the active emulsion polymer in an aqueous phase of the water-in-oil emulsion. The active emulsion polymer can be a friction-reducing polymer, a flocculant polymer, or any other polymer suitable for delivery within the aqueous phase of the water-in-oil emulsion.
Abstract:
Through a lubricating oil additive including an amide compound represented by the following general formula (1) and a lubricating oil composition using the same, a lubricating oil additive and a lubricating oil composition exhibiting not only a high intermetal friction coefficient but also excellent intermetal friction-coefficient/slipping-velocity characteristics are provided. Ra—CO—(NH-L1)n-NRbRc (1) In the formula, Ra is a straight-chain alkyl group having 8 to 22 carbon atoms or a branched-chain alkyl group having 8 to 22 carbon atoms, or a straight-chain alkenyl group having 8 to 22 carbon atoms or a branched-chain alkenyl group having 8 to 22 carbon atoms; L1 is an alkylene group having 1 to 6 carbon atoms; n is an integer of 1 to 4; and —NRbRc is a primary amino group or a piperazyl group.
Abstract:
The invention relates to an anti-friction coating (11, 12, 41, 42, 43) and an anti-friction coating composite (10) comprising at least 25 vol. % of a binder (16) and comprising fillers, which include zinc sulfide (18) and barium sulfate (20) and optionally additional fillers, wherein the volume ratio of barium sulfate (20) to zinc sulfide (18) is between 0.1 and 15.7, preferably between 0.8 and 4.88, and particularly preferably between 1.5 and 3.44. The anti-friction coating composite (10,40) comprises at least two anti-friction coatings (11, 13) of different compositions. The invention further relates to sliding bearing layered composite materials comprising such coatings and use thereof in internal combustion engines.
Abstract:
The invention relates to a method for preparing metal workpieces for cold forming by first applying a phosphate layer and then applying a lubricant layer which has a major content in organic polymer material. The phosphate layer is formed by an aqueous acidic phosphating solution having a major content in calcium, magnesium or manganese and phosphate. The lubricant layer is formed by contacting the phosphated surface with an aqueous lubricant composition which has a content in organic polymer material based on ionomer and optionally also non-ionomer the organic polymer material used predominantly being monomers, oligomers, co-oligomers, polymers or copolymers based on ionomer, acrylic acid/methacrylic acid, epoxide, ethylene, polyamide, propylene, styrene, urethane, the ester or salt thereof. The invention also relates to the corresponding lubricant composition, to the lubricant layer produced thereof and to its use.
Abstract:
A tubular threaded element including a dry protective coating. The coating includes a solid matrix adhering to the substrate in which there are dispersed particles of at least one solid lubricant belonging to one and the same class. The solid matrix is lubricating and has a rheological behavior of plastic or viscoplastic type. The coating protects the threadings of the threaded elements, used for example in hydrocarbon wells, from corrosion and galling.