摘要:
Disclosed is a fluoropolyether compound comprising a C4-10 aliphatic hydrocarbon chain present in the middle of the fluoropolyether compound and at least two perfluoropolyethers.
摘要:
The present invention relates to a coating for high-temperature applications with tribological stress. The coating comprises a multi-layer system and a top lubrication layer, the top lubricant layer containing, as a main component, molybdenum.
摘要:
The present invention relates to a coating for high-temperature uses with tribological stress. The coating comprises a multi-layer system and a top lubricant layer, the top lubricant layer containing molybdenum as a main component.
摘要:
The disclosure provides grey cast iron-doped diamond-like carbon coating compositions useful for reducing friction and wear in mechanical contact surfaces and methods for deposition of such compositions.
摘要:
The present invention relates to a coating for high-temperature uses with tribological stress. The coating comprises a multi-layer system and a top lubricant layer, the top lubricant layer containing molybdenum as a main component.
摘要:
An article of method of manufacture of a low friction tribological film on a substrate. The article includes a substrate of a steel or ceramic which has been tribologically processed with a lubricant containing selected additives and the additives, temperature, load and time of processing can be selectively controlled to bias formation of a film on the substrate where the film is an amorphous structure exhibiting highly advantageous low friction properties.
摘要:
An aspect of the present invention relates to a lubricant composition comprising a polyether compound comprising an alkylene oxide residue and a carbonic acid ester residue.
摘要:
Embodiments of the present invention may provide textured surfaces to be lubricated, the texturing to enhance the effectiveness of the intended nano-lubrication. The texturing may make asperities and depressions in the surface to be lubricated. This texturing may be executed, for example, by chemical etching, laser etching, or other techniques. This texturing may create locations in the lubricated surface to hold or anchor the intended nano-lubricants, to facilitate the creation of a tribo-film on the surface when the lubricated surface is used under pressure, and resulting in delivery of multiple chemistries from the nano-lubricant.
摘要:
The present invention provides a surface-oxide abrasion-resistant lubricant coating that can maintain high lubricity for a long time without wear of a base material and a coating or damage to an object to be contacted by a simpler method and with less expensive material. A mixed fluid of a compressed gas and fine-particle powders of two soft metals having lower hardness and lower melting point than the base material of a sliding contact portion is ejected onto a surface of the sliding contact portion. The fine-particle powders of the soft metals are made to react with oxygen in the compressed gas at the surface of the sliding contact portion to form a metal-oxide film with high melting point composed of metal oxides of the two soft metals, one of the metal oxides having higher hardness than the other. This metal-oxide film with high melting point includes a coating having a thickness of 0.1 μm to 2 μm at an interface toward an object to be contacted, that is composed of the metal oxides, that has low friction resistance and low shear resistance, and shear fractures concentrated the coating thereto.
摘要:
[Task]In a sliding member comprising a substrate and a coating layer provided thereon, the coating layer has a sliding surface and is formed of a resin-based coating and particles of a solid lubricant dispersed therein. The orientation ratio of (001) plane of the solid lubricant is enhanced.[Means for Solution]The coating layer of a sliding layer has an average thickness of 3 μm or less. The particles of the solid lubricant have 2 μm or more of an average particle diameter as measured by the laser diffraction method. The solid lubricant dispersed has 90% or more of relative C-axis intensity ratio.