Abstract:
An abrasive cleaning agent is provided which can be used for a polishing process for polishing a surface of a workpiece to form a mirror surface, which suppresses generation of static electricity and adhesion of stains to the workpiece, which decreases a crushing ratio, and which has a low environmental burden when the abrasive cleaning agent is disposed of. The above abrasive cleaning agent includes an elastic material containing a soluble nitrogen substance as a primary component, which is obtained from tubers of devil's tongue and which contains mannan as a primary component, and a 10% to 30% of water; and 1 to 30 percent by weight, with respect to the elastic material, of abrasive grains of size #220 or less, which are supported on surfaces of the elastic material and/or are buried therein, so that the grain diameter on the whole is in the range of 88 to 1,190 μm.
Abstract:
A sliding member is produced by forming hardening layers with two-layered structure on surface of a substrate metal with a Vickers hardness of not more than Hv300, such as aluminum or magnesium alloy for example, and then forming a DLC film having surface roughness defined as maximum height roughness Rz of 1 to 10 μm further on the hardening layers. The above-described hardening layers are composed of a first hardening layer dispersed with heavy metal particles, preferably made of tungsten and/or tantalum in the substrate metal, and a second hardening layer formed under the first hardening layer.
Abstract:
Uniform nano-scale microstructures can be reliably formed on the surface layer of this metal product while still improving the surface roughness and make the surface layer robust enough not to disappear due to wear. The surface of the metal product is repeatedly subjected to instantaneous rapid heating and rapid cooling by intermittently ejecting onto the surface of the metal product shot with a mixture of three or more approximate but different particle sizes for a high ejection density, thereby forming uniform microstructures near the surface of the metal product and forming micro-diameter dimples in the metal surface.
Abstract:
A method for surface treatment capable of easily improving a mechanical strength of an internal combustion piston at a reasonable cost is provided. A modified surface layer is formed by injecting injection powders containing a reinforcing element to be collided with an Al—Si alloy-based piston obtained by casting and forging by injecting under predetermined conditions, the reinforcing element being diffused and penetrated in the piston to improve the strength thereof. When a function, such as fuel modification, is imparted to the modified surface layer, an element exhibiting a photocatalytic function by oxidation, such as Ti, Sn, Zn, Zr, or W, is selected as the reinforcing element. By locally heating and cooling performed on the piston surface by the collision with the injection powders, alloy elements are fine-grained by recrystallization, the reinforcing element in the injection powders is diffused and penetrated in the piston surface by activated adsorption, and a modified layer having a uniformly fine-grained microstructure containing the alloy elements and the reinforcing element is formed. As a result, besides improvement in strength of the piston, by the selection of the above element, such as Ti, the photocatalytic function, such as fuel modification, can also be obtained.
Abstract:
Occurrence of a powder dust explosion is prevented in a photocatalyst coating method of forming a titania layer by injection of titanium powder. Powder of titanium or titanium alloy is injected on a surface of a product to be treated composed of metallic product, ceramic, or mixture thereof, with compressed gas having inert gas as a principal component containing oxygen from 0 to 15% by mass, and the titanium in the powder of titanium or titanium alloy is diffused and oxidized on the surface of the product to be treated to form a titania layer.
Abstract:
Uniform nano-scale microstructures can be reliably formed on the surface layer of this metal product while still improving the surface roughness and make the surface layer robust enough not to disappear due to wear. The surface of the metal product is repeatedly subjected to instantaneous rapid heating and rapid cooling by intermittently ejecting onto the surface of the metal product shot with a mixture of three or more approximate but different particle sizes for a high ejection density, thereby forming uniform microstructures near the surface of the metal product and forming micro-diameter dimples in the metal surface.
Abstract:
The present invention provides a surface-oxide abrasion-resistant lubricant coating that can maintain high lubricity for a long time without wear of a base material and a coating or damage to an object to be contacted by a simpler method and with less expensive material. A mixed fluid of a compressed gas and fine-particle powders of two soft metals having lower hardness and lower melting point than the base material of a sliding contact portion is ejected onto a surface of the sliding contact portion. The fine-particle powders of the soft metals are made to react with oxygen in the compressed gas at the surface of the sliding contact portion to form a metal-oxide film with high melting point composed of metal oxides of the two soft metals, one of the metal oxides having higher hardness than the other. This metal-oxide film with high melting point includes a coating having a thickness of 0.1 μm to 2 μm at an interface toward an object to be contacted, that is composed of the metal oxides, that has low friction resistance and low shear resistance, and shear fractures concentrated the coating thereto.
Abstract:
A method for surface treatment capable of easily improving a mechanical strength of an internal combustion piston at a reasonable cost is provided. A modified surface layer is formed by injecting injection powders containing a reinforcing element to be collided with an Al—Si alloy-based piston obtained by casting and forging by injecting under predetermined conditions, the reinforcing element being diffused and penetrated in the piston to improve the strength thereof. When a function, such as fuel modification, is imparted to the modified surface layer, an element exhibiting a photocatalytic function by oxidation, such as Ti, Sn, Zn, Zr, or W, is selected as the reinforcing element. By locally heating and cooling performed on the piston surface by the collision with the injection powders, alloy elements are fine-grained by recrystallization, the reinforcing element in the injection powders is diffused and penetrated in the piston surface by activated adsorption, and a modified layer having a uniformly fine-grained microstructure containing the alloy elements and the reinforcing element is formed. As a result, besides improvement in strength of the piston, by the selection of the above element, such as Ti, the photocatalytic function, such as fuel modification, can also be obtained.
Abstract:
Occurrence of a powder dust explosion is prevented in a photocatalyst coating method of forming a titania layer by injection of titanium powder. Powder of titanium or titanium alloy is injected on a surface of a product to be treated composed of metallic product, ceramic, or mixture thereof, with compressed gas having inert gas as a principal component containing oxygen from 0 to 15% by mass, and the titanium in the powder of titanium or titanium alloy is diffused and oxidized on the surface of the product to be treated to form a titania layer.
Abstract:
There is provided a method for surface treatment of a sliding portion, which is an economical method, has less risk of pollution in a working environment, or a fire caused by powder dust, and yet enables high lubricativeness to be achieved, and moreover, many concavities to be formed on a sliding portion simultaneously with giving the lubricativeness. An injection particle to be obtained by blending a soft-metal solid lubricant particle of which a surface has been oxidized and a layered-structure solid lubricant particle is injected onto a surface of the sliding portion of a product to be treated at an injection speed of 150 m/sec or more, thereby to diffuse and penetrate an oxide of the soft-metal solid lubricant and the layered-structure solid lubricant into the surface to form a layer, and to form many concavities on the surface of the sliding portion.