摘要:
The present disclosure relates to bioremediation systems and methods for wastewater treatment in heavy industry, including the mining industry. A benefit of the systems and methods disclosed herein can include the reduction of heavy metals in wastewater. Another benefit can be the treatment of acidic wastewater to achieve higher pH levels. An additional benefit can be the use of carbon dioxide to raise the pH level of acidic wastewater, or to produce feedstocks for the growth of anaerobic or aerobic microorganisms that are capable of reducing a concentration of heavy metals in wastewater. A benefit of the systems and methods herein can include the treatment of acid mining drainage wastewater, as well as heavy metal removal from other industrial wastewater. Another benefit of the methods and systems disclosed herein can include reduction of excess carbon dioxide from the environment.
摘要:
A method is presented for biological removal of contaminants like sulfide from ground waters and industrial waters. A fixed film compartmentalized bioreactor or bioreactors are used to convert sulfide to elemental sulfur and the subsequent conversion of the elemental sulfur to sulfates. The present invention uses a packed bed bioreactor configuration that uses packing material to maximize the concentration of sulfide oxidizing bacteria.
摘要:
A first aspect of the present invention relates to a process for recovering crystalline elemental selenium (Se) from an aqueous composition, such as waste water or groundwater. A second aspect of the present invention further relates to a microbial sludge comprising crystalline elemental selenium, which sludge may be used in the further recovery of elemental selenium.
摘要:
A system for removing undesirable compounds from contaminated air includes a biofilter having an alkaline material introduction system and a fuzzy-logic based controller. A contaminant, such as hydrogen sulfide, is removed from contaminated air by passing the contaminated air through the biofilter.
摘要:
Disclosed herein are methods, systems, and devices for generating electricity from an effluent source. In the presence of electrogenic bacteria and substrate electrodes, an electroactive biofilm is produced which possesses bioconductive capacity for efficiently producing an electric current while treating an effluent source such as, e.g., wastewater. This disclosure relates generally to the production of electricity from a biological source. In particular, this disclosure relates to microbial fuel cells (MFCs) and other bioelectrochemical systems (BES) that exploit an exogenous fuel source.
摘要:
A method for continuous in-situ triglyceride stabilization in FOG (Fats, Oil and Grease) commonly referred to as trap grease. The stabilization is achieved by eliminating hydrolysis and thus preventing the BTU rich triglycerides breaking down into free fatty acids (FFA) or the formation of mono- and diglycerides. A closed loop aeration and recirculation of the FOG ensures sufficient dissolved oxygen not only arresting hydrolysis but also eliminating the formation of hydrogen sulfide. The method furthermore employs the formation and continuing functioning of a biofilm for the microbiological reduction of the FOG's sulfur content. A low FFA/high triglycerides concentration as well as sulfur reduction is highly desirable, allowing for easy biodiesel fuel conversion or bio-gasification. The resulting biofuel does not exhibit the typical hygroscopic property found in B100 biodiesel.
摘要:
In one embodiment, a method of treating a source water containing at least one toxin is provided, the method comprising: (i) exposing a source water to a gas comprising ozone under a condition that promotes an interaction between the toxin and the ozone; and then (ii) subjecting the treated source water to a biological treatment.
摘要:
In a method for removing sulphate and heavy metals from waste water: a) in a first treatment step (I) hydrogen sulphide is guided through the waste water, heavy metals that are present in the waste water are precipitated as sulphide, and are removed from the waste water, b) in a second treatment step (II), calcium sulphate is precipitated from the waste water by adding a precipitation auxiliary agent, c) the calcium sulphate is removed in the second treatment step (II) and one part thereof is guided to a third treatment step (III) in which sulphate is converted into hydrogen sulphide with the aid of sulphate-reducing bacteria, d) hydrogen sulphide formed in the third treatment step (III) is guided back to the first treatment step (I).
摘要:
In a waste water treatment apparatus and/or method, waste water containing aminoethanol and dimethyl sulfoxide is introduced into a first denitrification tank within a first waste water treatment apparatus. Malodorous gas generated in the first waste water treatment apparatus is decomposed and treated in a second waste water treatment apparatus where another waste water is treated as another system. The second waste water treatment apparatus has a second nitrification tank including a semi-anaerobic section. The malodorous gas is introduced from the first waste water treatment apparatus into a scrubber. The malodorous gas is treated by sludge which is circulated between the second nitrification tank and the scrubber.
摘要:
Without using any pumps and controlling devices, to control microorganism's activity by supplying an activity controlling substance which is necessitated for the microorganism activity is realized. A microbial activity controlling material 3 is filled into a vessel 4 having a sealed structure and at least a part of which is provided with a non-porous film 2, and then, the microbial activity controlling material 3 is supplied through the non-porous film 2 part of the vessel 4 to ambient places around the vessel 4 at the speed controlled by the molecular permeation performance of the non-porous film 2, and thereby the activities of microorganisms residing around the vessel is controlled. The microbial activity controlling material 3 is at least one of materials which function as electron donor being of an energy source of microorganism, acidic materials, basic materials, inorganic salts, oxygen releasing materials and oxygen absorbing materials, except combinations of acidic materials and basic materials and combinations of oxygen releasing materials and oxygen absorbing materials.