摘要:
A method for controlling an electric machine for driving a motor vehicle. A flux density of at least one magnetic field generated in the electric machine is increased when an announcement signal is present that announces an upcoming acceleration command by the driver, and when a confirmation signal is present that confirms the announced acceleration command, the electric machine is controlled in such a way that the speed and/or torque thereof increases.
摘要:
A device/method for the control of a charge operation and the State Of Charge (SOC) of an electrical Energy Storage System (ESS), e.g. a battery, that includes a multitude of cells is provided. The ESS is electrically connected to a propulsion system of a vehicle in order to power an Electric Motor. The method includes charging the ESS from an electrical power source, e.g., the grid, when the vehicle is at standstill, stopping the charging when the SOC level of the ESS is above a maintenance limit for the SOC level of the ESS, monitoring the battery and/or performing a service operation of the ESS after the ESS has been charged to a SOC level above the maintenance limit for the SOC level of the ESS, deliberately discharging the ESS to lower the SOC level. The SOC level of the ESS is reduced to a take-off limit for the SOC level of the ESS which is set in order to allow the vehicle to be controlled to use regenerative braking for charging of the ESS under subsequent driving when the vehicle is restarted and takes off.
摘要:
A method for damping juddering in the drive train of a vehicle having an electric motor as the drive motor, and a vehicle having a closed-loop control system to carry out the method. The method includes calculating an electric motor setpoint torque for actuating the electric motor from an electric motor request torque which corresponds to a current request for a torque, and calculating a correction torque as a function of the electric motor request torque and a correction factor which is determined from a rotational speed of the electric motor.
摘要:
Embodiments of the invention provide a controller for a hybrid electric vehicle (HEV) having an engine and an electric machine, the controller being configured upon start-up to control an electric machine to provide torque to drive a vehicle with an engine off if a state of charge (SoC) of an energy storage device is above an EV-start SoC threshold and to start an engine if a SoC of an energy storage device is below the EV-start SoC threshold, wherein the EV-start SoC threshold is determined to be one selected from amongst a value sufficient to allow a vehicle to travel a prescribed distance before a SoC falls below a SoC minimum level at which an engine is started and a value sufficient to allow a vehicle to operate for a prescribed time period before a SoC falls below the SoC minimum level.
摘要:
There is provided a vehicle-side charging apparatus disposed in a vehicle (2). The charging apparatus includes a power receiving coil (21) which receives power from a power transmitting coil (11) disposed in a power feeding apparatus (1) in a non-contacting manner through at least magnetic coupling, a battery (25) which is charged by reception power of the power receiving coil (21), and a vehicle-side controller (20) which controls battery charge of the battery and outputs a command of a power feeding amount to the power feeding apparatus. The power feeding amount is an amount of power feeding from the power transmitting coil to the power receiving coil. The vehicle-side controller (20) determines whether or not the vehicle (2) is to be started. The vehicle-side controller (20) outputs a command for decreasing the power feeding amount to the power feeding apparatus (1) when the vehicle-side controller (20) determines that the vehicle (2) is to be started during the power feeding from the power transmitting coil (11) to the power receiving coil (21).
摘要:
Provided is an electric drive vehicle which can control wheel speed so as to achieve an appropriate slip ratio of the wheels even when pitching vibration of the vehicle is large. This electric drive vehicle is provided with electric motors (1, 4), drive wheels (3, 6), driven wheels (7, 8), an electric motor controller (50) for controlling the electric motors, and speed detectors (9-12) for detecting the wheel speed of the drive wheels and the driven wheels. The electric motor controller is provided with: a slip ratio calculation unit (21) which calculates the slip ratio of the drive wheels from the wheel speed detected values detected by the speed detectors; a torque command calculation unit (20) which calculates torque commands for the drive wheels; a drive force calculation unit (19) which, from the wheel speed detected values of the drive wheels and the torque commands of the drive wheels, calculates the drive force generated in the drive wheels; and filters (54, 55) which reduce the pitching vibration frequency components of the vehicle included in the slip ratio and the drive force.
摘要:
An electric vehicle includes a controlling device and a battery unit. The controlling device is connected to a switch, an electric motor, an accelerator controller, and a generator unit. The switch is connected to the generator unit. The battery unit includes a primary battery and a secondary battery. The primary battery is connected to the controlling device. The secondary battery is connected to the generator unit. When the switch is turned on, the controlling device and the generator unit are activated, and when the accelerator controller activates the generator unit via the generator unit controlling device, the controlling device firstly supplies power to the electric motor by the generator unit. After the electric motor has been started, the controlling device cuts off power supply from the generator unit to the electric motor, and the primary battery supplies power to the electric motor.
摘要:
A slip control device for an electric vehicle which errorlessly determines slippage occurrence with only a rotation angle sensor for motor rotation control and perform rapid control to eliminate the slippage, is provided. A threshold calculator 21 calculates a normal angular acceleration of a motor depending on a manipulation amount of an accelerator to obtain a threshold, and an angular acceleration calculator 22 differentiates a detection value from a rotation angle sensor 3a twice to calculate an angular acceleration. A slip determination 23 determines whether a wheel 7 driven by a motor 3 has slipped, and a torque limitation 25 limits a torque when determining a slippage. The determination 23 compares the calculated acceleration to the threshold, counts a number of times it is consecutively determined that the calculated acceleration exceeds the threshold, and determines a slippage if the number of times has reached a set value.
摘要:
An engine start using an electric motor during a vehicle travel is performed by increasing an output torque of the electric motor in a slip state where a second frictional engagement element 3 connecting the electric motor 1 and a driving wheel slips. A controller determines a requested acceleration amount from a depression amount of an accelerator pedal. When the requested acceleration amount is significant, a different torque increment characteristic is applied, compared to a case where the requested acceleration amount is not significant. Thus, the internal combustion engine starts in a high response depending on the requested acceleration amount input by the driver, thereby improving a vehicle acceleration response.
摘要:
A method, device, and system for surge current protection on a circuit including a three-phase inverter and a capacitive load. The inverter can be controlled to connect the capacitive load with different direct current voltage potentials. In a pre-charging mode, the capacitive load is connected with the a first direct current voltage potential via a current-limiting element to limit a start-up current. In a normal operating mode following the pre-charging mode, the inverter is controlled to directly connect the capacitive load with the different direct current voltage potentials.