摘要:
There is provided a method for manufacturing a joint member obtained by joining a carbon fiber composite material containing a thermoplastic resin as a matrix and a metal. The method includes a step (i) of forming an uneven shape having a depth of 0.02 to 0.6 mm on a surface of the metal at a joining portion; a step (ii) of providing a thermoplastic resin layer having a thickness in the range of 5μm or more and 5 mm or less at a joining portion between the surface of the metal and a surface of the composite material; and a step (iii) of melting the thermoplastic resin layer by heating the joining portion to thereby combine the metal and the composite material into one.
摘要:
The invention relates to a joint including a substrate, optionally a metal substrate, and a body of material joined to the substrate, the body of material typically having a composite portion. An outer surface of the substrate is provided with a fastening projection for fastening the substrate to body of material, wherein the fastening projection has a stem and a plurality of branches having dendritic geometry projecting into the material of the body.
摘要:
In a method for producing a rail-shaped hybrid component, in particular for an aircraft or spacecraft, a second rail component made of a titanium material is positioned on a first bar of a first profile rail that is made of a carbon-fiber reinforced plastic material and moved in an advancing direction, in a fixed position relative to the first profile rail, such that a bar portion of the first bar is arranged between a first connecting portion of the second rail component and a second connecting portion of the second rail component, and the second rail component is cohesively connected to the first profile rail. Furthermore, the hybrid component has a first profile rail made of a carbon-fiber reinforced plastic material and a second rail component made of a titanium material.
摘要:
A joint including a substrate, optionally a metal substrate, and a body of material joined to the substrate, the body of material typically having a composite portion. An outer surface of the substrate is provided with a fastening projection for fastening the substrate to body of material, where the fastening projection has a stem and a plurality of branches having dendritic geometry projecting into the material of the body.
摘要:
An attachment component which includes a body, the body having attachment means intended for allowing the attachment component to be assembled with a part including complementary attachment means, an insertion tip arranged at one end of the body so as to allow at least one portion of the body to be inserted through a part made of composite material, an axial abutment intended for halting the insertion of the body through the part made of composite material, and a breakable portion inserted between the insertion tip and said end of the body, the breakable portion being configured to break when a predetermined force is applied to the insertion tip with a view to detaching the insertion tip from the body.
摘要:
A method of joining a first component to a second component. A membrane is provided between the first component and a fluid. Pressure of the fluid is used to apply a compression force to a first part of the first component via the membrane. The pressure of the fluid is also used to apply an insertion force to the second component which pushes projections of the second component into a second part of the first component. The method can be integrated into a conventional manufacturing method, such as a “vacuum-bagging” process, which employs fluid pressure and a non-permeable membrane to compress the first component. The pressure of the fluid is used not only to apply the compression force, but also to apply the insertion force to the second component.
摘要:
A system comprising a pipe and at least one fitting, wherein the pipe is made essentially of a thermoplastic, fiber-reinforced composite material, and the fitting is made essentially of titanium or a titanium alloy, and the pipe and the fitting are connected in a fluid-tight manner
摘要:
A golf club head comprises a metal member made of at least one kind of metal material and a resin member made of a resin material welded to the metal member. A method for manufacturing the golf club head comprises a step of welding the resin member to the metal member.
摘要:
Various embodiments relate to plastic-metal junctions and methods of making the same via laser-assisted joining. The present invention provides a method of forming a junction between a metal form and a solid plastic. The method can include laser treating a surface of a metal form to generate a feature (e.g., a plurality of at least one of pores and grooves) in the surface of the metal, wherein the laser has an angle of incidence with the surface of the metal of other than 0 degrees. The method can include contacting the metal surface including the feature with a flowable resin composition. The method can include curing the flowable resin composition to form the solid plastic, to provide the junction between the metal form and the solid plastic.
摘要:
A joint member (100) includes a metal component (12) and a composite component (14) which are joined by a joint (10) formed at a non-planar joint interface (18) defined by a textured surface portion (28) of the metal component (12) and a solidified melted area (24) of the composite component (14). The solidified melted area (24) adjacent to the joint interface (18) is characterized by a plurality of non-contiguous solidification boundaries (22) and a non-contiguous dispersion of porosity (16). A method includes forming a textured surface portion (28) on the metal component (12), pressing the textured surface portion (28) into the surface of the composite component (14) to form depressions (32) in the composite component (14), such that a joint interface (18) is defined by the surfaces of the textured surface portion (28) and the composite depressions (32), heating the joint interface (18) to melt an area of the composite component (14) adjacent to the joint interface (18), and solidifying the melted area (24) to the form a joint (10) at the joint interface (18).