Abstract:
The present application relates to a plasma polymer thin film and a method for preparing the same, the plasma polymer thin film prepared using a first precursor material represented by the following Chemical Formula 1:
(In Chemical Formula 1, R1 to R9 are each independently H or a C1-C5 substituted or unsubstituted alkyl group, and when R1 to R9 are substituted, the substituent is an amino group, a hydroxyl group, a cyano group, a halogen group, a nitro group, or a methoxy group).
Abstract:
An article with controllable wettability includes a substrate and a layer of a composite material supported on the substrate. The layer has an exposed surface and the composite material includes particles that have controllable polarization embedded fully or partially in a matrix. A controller is operable to selectively apply a controlled variable activation energy to the layer. The controllable polarization of the particles varies responsive to the controlled variable activation energy such that a wettability of the exposed surface also varies responsive to the controlled variable activation energy.
Abstract:
A fabrication assembly comprises an apparatus that receives a composite substrate and a glass substrate having a surface with a release coating layer. A resin layer is deposited between the composite and glass substrates such that a first portion of the resin layer is positioned adjacent to a surface of the composite substrate and a second portion of the resin layer is positioned adjacent to the surface with the release coating layer to prevent aperture(s) from forming. A curing of the resin layer is conducted using electromagnetic radiation. A post-processing chamber receives the resin layer positioned between the composite substrate and the glass substrate and conducts another curing of the resin layer. The resin layer and the composite substrate are released from the glass substrate. Another deposition apparatus receives the resin layer and the composite substrate. A metallic coating is deposited to form a composite mirror object.
Abstract:
An article with controllable wettability includes a substrate and a layer of a composite material supported on the substrate. The layer has an exposed surface and the composite material includes particles that have controllable polarization embedded fully or partially in a matrix. A controller is operable to selectively apply a controlled variable activation energy to the layer. The controllable polarization of the particles varies responsive to the controlled variable activation energy such that a wettability of the exposed surface also varies responsive to the controlled variable activation energy.
Abstract:
A method for forming an inorganic or hybrid organic/inorganic barrier layer on a substrate, comprising condensing a vaporized metal alkoxide to form a layer atop the substrate, and contacting the condensed metal alkoxide layer with water to cure the layer is provided.
Abstract:
Material treatment is effected in a treatment region by at least two energy sources, such as (i) an atmospheric pressure plasma and (ii) an ultraviolet laser directed into the plasma and optionally onto the material being treated. Precursor materials may be dispensed before, and finishing material may be dispensed after treatment. Electrodes for generating the plasma may comprise two spaced-apart rollers. Nip rollers adjacent the electrode rollers define a semi-airtight cavity, and may have a metallic outer layer.
Abstract:
Bondable fluorinated barrier coatings on oxidized metal surfaces. The barrier coatings include a perfluorinated silane having a C2-C30 alkyl chain with a reactive silicon end containing 1 to 3 leaving groups. The perfluorinated silane layer is covalently bonded to an underlying oxide layer and the outer surface is treated with an atmospheric-pressure plasma treatment. The resultant barrier coating exhibits corrosion resistance attributed to perfluorinated silanes but with enhanced bonding/adhesion properties.
Abstract:
Adhesive articles are prepared through the use of modified release liners. The modified release liners include a fracturable layer and a release surface partially covering the fracturable layer. The modified release liners may be prepared by selective coating of a release material onto the fracturable layer or by selective treatment of a release surface to expose portions of the fracturable layer. Upon removal of an adhesive layer adhered to the modified release liner, portions of the fracturable layer of the release liner adhere to the adhesive layer to form a modified adhesive layer.
Abstract:
Material comprising sub-micrometer particles dispersed in a polymeric matrix. The materials are useful in article, for example, for numerous applications including display applications (e.g., liquid crystal displays (LCD), light emitting diode (LED) displays, or plasma displays); light extraction; electromagnetic interference (EMI) shielding, ophthalmic lenses; face shielding lenses or films; window films; antireflection for construction applications; and construction applications or traffic signs.
Abstract:
A deposit removal method for removing deposits deposited on the surface of a pattern formed on a substrate by etching, includes an oxygen plasma treatment process for exposing the substrate to oxygen plasma while heating the substrate and a cycle treatment process for, after the oxygen plasma treatment process, repeating multiple cycles of a first period and a second period. In the first period, the substrate is exposed to a mixture of hydrogen fluoride gas and alcohol gas inside a processing chamber and the partial pressure of the alcohol gas is set to the first partial pressure. In the second period, the partial pressure of the alcohol gas is set to the second partial pressure lower than the first partial pressure by exhausting the inside of the processing chamber.