Abstract:
Methods and systems for purifying argon from a crude argon stream are disclosed, employing pressure swing adsorption at cold temperatures from −186° C. to −20° C.; more preferably from −150° C. to −50° C.; and most preferably from −130° C. to −80° C. with oxygen-selective zeolite adsorbent. In some embodiments, the oxygen-selective zeolite adsorbent is a 4A zeolite, a chabazite, or a combination thereof.
Abstract:
An exhaust system for an internal combustion engine is disclosed. The exhaust system comprises a particulate filter, one or more NOx reduction catalysts, and a low pressure exhaust gas recirculation (EGR) circuit for connecting the exhaust system downstream of the filter and the one or more NOx reduction catalysts to an intake of the engine. The EGR circuit comprises a N2O-producing catalyst.
Abstract:
A syngas treatment plant is configured to remove sulfurous compounds from syngas in a configuration having two flash stages for a physical solvent to so enrich the acid gas to at least 40 mol % H2S or higher as required by the Claus unit and to flash and recycle CO2 back to the syngas feed. Contemplated methods and configurations advantageously remove sulfur to less than 10 ppmv while increasing H2S selectivity at high pressure operation to thereby allow production of an H2S stream that is suitable as feed gas to a Claus plant.
Abstract:
The invention relates to ammonia synthesis loops containing gases, which do not react and would accumulate if they were not purged out. By the present invention ammonia in a purge gas is recovered by an absorption agent operating at the full synthesis loop pressure. The absorption agent is chosen in such a way that the ammonia can be removed again by passing a gas comprising hydrogen and nitrogen through it at the same elevated pressure as the loop pressure. This enables the adsorption agent to be regenerated by fresh synthesis gas coming from the synthesis gas compressor just before this gas enters the synthesis loop. Thereby, the regeneration requires an absolute minimum of energy consumption and equipment.
Abstract:
The invention relates to an absorbent solution for absorbing acid compounds, such as hydrogen sulfide and carbon dioxide, in a gaseous effluent, containing water and a mixture of amines comprising 1,2-bis-(2-dimethylaminoethoxy)-ethane and 2-[2-(2-dimethylaminoethoxy)-ethoxy]-ethanol, of respective formulas (I) and (II) below, and to a method of removing acid compounds contained in a gaseous effluent using this solution.
Abstract:
A navigation mountable on-board a vehicle. The subsystem is configured to: receive a mixture including ammonia, carbon dioxide and water; generate from the mixture an ammonia rich fraction and a carbon dioxide rich fraction; the ammonia rich fraction containing a smaller weight percentage of carbon dioxide than the mixture and the carbon dioxide rich fraction containing a smaller weight percentage of ammonia than the mixture.
Abstract:
The present invention includes a process for the dehydration of ethanol by adsorption of water at elevated pressure and for the regeneration (purging) of adsorbent at a lower pressure than the pressure used for the adsorption of water where the ratio of the duration of the regeneration (purge) step to the duration of the water adsorption step is higher than 0.1 and the temperature of adsorption is greater than 260 degree Fahrenheit.
Abstract:
A system and method is provided for using sunlight to convert an atmospheric gas to an output product and capture that output product. A photocatalytic element is encapsulated within a chamber of a photocatalytic panel in which the chamber is light transmissive, and is substantially permeable to the atmospheric gas and substantially impermeable to the output product. Water may be provided to the photocatalytic element to react with the atmospheric gas. A system is provided for withdrawing the output product for storage.
Abstract:
The invention provides a process for the removal of COS from a first synthesis gas stream comprising COS and H2S, the process having the steps of: (a) converting COS in the first synthesis gas stream to H2S by contacting the first synthesis gas stream with a COS-hydrolysing catalyst in the presence of water in a hydrolysis zone to obtain a second synthesis gas stream depleted of COS and enriched in H2S; (b) removing H2S from the second synthesis gas stream by contacting the second synthesis gas stream with a solid adsorbent in a H2S removal zone to obtain a third synthesis gas stream depleted of H2S and depleted of COS
Abstract:
An exhaust system for an internal combustion engine is disclosed. The exhaust system comprises a particulate filter, one or more NOx reduction catalysts, and a low pressure exhaust gas recirculation (EGR) circuit for connecting the exhaust system downstream of the filter and the one or more NOx reduction catalysts to an intake of the engine. The EGR circuit comprises a N2O-producing catalyst.