Abstract:
A magnetic deflector for an ion beam is disclosed and comprises first and second coils. The coils are positioned above and below the beam, respectively, and extend along a width of the beam. Current passes through the coils to generate a magnetic field therebetween that is generally perpendicular to a direction of travel of the beam along substantially the entire width thereof. In another aspect of the invention, a method of deflecting a beam prior to implantation into a workpiece is disclosed. The method includes determining one or more properties associated with the beam and selectively activating one of a magnetic deflection module and an electrostatic deflection module based on the determination.
Abstract:
A mass analyzer for a ribbon shaped ion beam is disclosed. The mass analyzer comprises a pair of coils that define an entrance end and an exit end of the analyzer. Field clamps are employed at or proximate to one or more of the entrance and exit ends of the mass analyzer. The field clamps operate to terminate fringing fields close to the entrance and exit ends of the mass analyzer, thereby reducing the impact of such fringing fields on the ribbon beam and improving beam uniformity.
Abstract:
A mass analyzer for a ribbon shaped ion beam is disclosed. The mass analyzer comprises a pair of coils that define an entrance end and an exit end of the analyzer. Field clamps are employed at or proximate to one or more of the entrance and exit ends of the mass analyzer. The field clamps operate to terminate fringing fields close to the entrance and exit ends of the mass analyzer, thereby reducing the impact of such fringing fields on the ribbon beam and improving beam uniformity.
Abstract:
An accelerating structure and related method for accelerating/decelerating ions of an ion beam are disclosed. The structure and related method are suitable for use in selectively implanting ions into a workpiece or wafer during semiconductor fabrication to selectively dope areas of the wafer. In addition to accelerating and/or decelerating ions, aspects of the present invention serve to focus as well as to deflect ions of an ion beam. This is accomplished by routing the ion beam through electrodes having potentials developed thereacross. The ion beam is also decontaminated as electrically neutral contaminants within the beam are not affected by the potentials and continue on generally traveling along an original path of the ion beam. The electrodes are also arranged in such a fashion so as to minimize the distance the beam has to travel, thereby mitigating the opportunity for beam blow up.
Abstract:
An ion implantation apparatus, system, and method for controlling an ion beam, wherein a mass analyzer generally positioned between an ion source and an end station is configured to selectively control a path of a desired ion beam. The mass analyzer comprises one or more of an entrance pole mechanism positionable proximate to an entrance of the mass analyzer and an exit pole mechanism positionable proximate to an exit of the mass analyzer, wherein the position of the entrance pole mechanism and exit pole mechanism generally determines the path and focal point of the desired ion beam. A controller is configured to selectively position one or more of the entrance pole mechanism and exit pole mechanism, therein generally controlling the path of the desired ion beam at the exit of the mass analyzer, wherein the control may be based on one or more detected characteristics of the desired ion beam.
Abstract:
An ion implantation apparatus, system, and method for controlling an ion beam, wherein a mass analyzer generally positioned between an ion source and an end station is configured to selectively control a path of a desired ion beam. The mass analyzer comprises one or more of an entrance pole mechanism positionable proximate to an entrance of the mass analyzer and an exit pole mechanism positionable proximate to an exit of the mass analyzer, wherein the position of the entrance pole mechanism and exit pole mechanism generally determines the path and focal point of the desired ion beam. A controller is configured to selectively position one or more of the entrance pole mechanism and exit pole mechanism, therein generally controlling the path of the desired ion beam at the exit of the mass analyzer, wherein the control may be based on one or more detected characteristics of the desired ion beam.
Abstract:
A method derives a terminal return current or upstream current to adjust and/or compensate for variations in beam current during ion implantation. One or more individual upstream current measurements are obtained from a region of an ion implantation system. A terminal return current, or composite upstream current, is derived from the one or more current measurements. The terminal return current is then employed to adjust scanning or dose of an ion beam in order to facilitate beam current uniformity at a target wafer.
Abstract:
A system, method, and apparatus for mitigating contamination during ion implantation are provided. An ion source, end station, and mass analyzer positioned between the ion source and the end station are provided, wherein an ion beam is formed from the ion source and travels through the mass analyzer to the end station. An ion beam dump assembly comprising a particle collector, particle attractor, and shield are associated with the mass analyzer, wherein an electrical potential of the particle attractor is operable to attract and constrain contamination particles within the particle collector, and wherein the shield is operable to shield the electrical potential of the particle attractor from an electrical potential of an ion beam within the mass analyzer.
Abstract:
A system, method, and apparatus for mitigating contamination associated with ion implantation are provided. An ion source, end station, and mass analyzer positioned between the ion source and the end station are provided, wherein an ion beam is formed from the ion source and selectively travels through the mass analyzer to the end station, based on a position of a beam stop assembly. The beam stop assembly selectively prevents the ion beam from entering and/or exiting the mass analyzer, therein minimizing contamination associated with an unstable ion source during transition periods such as a start-up of the ion implantation system.
Abstract:
An exemplary ion source for creating a stream of ions has a chamber body that at least partially bounds an ionization region of the arc chamber. The arc chamber body is used with a hot filament arc chamber housing that either directly or indirectly heats a cathode to sufficient temperature to cause electrons to stream through the ionization region of the arc chamber. A seals has a ceramic body having an outer wall that abuts the arc chamber body along a circumferential outer lip. The seal also has one or more radially inner channels bounded by one or more inner walls spaced inwardly from the outer wall.