Abstract:
A CMP slurry composition which provides for a high Ge- or SiGe-to-dielectric material selectivity a low rate of Ge or SiGe recess formation includes an oxidant and a germanium removal rate enhancer including at least one of a methylpyridine compound and a methylpyridine derivative compound. In some examples, the slurry composition also includes an etching inhibitor. In some cases, the slurry composition may include an abrasive, a surfactant, an organic complexant, a chelating agent, an organic or inorganic acid, an organic or inorganic base, a corrosion inhibitor, or a buffer. The slurry composition may be distributed onto a surface of a polishing pad disposed on a platen that is configured to rotate. Additionally, a workpiece carrier configured to house a substrate may bring the substrate into contact with the rotating polishing pad and thereby polish the substrate utilizing the slurry composition.
Abstract:
A CMP slurry composition which provides for a high Ge- or SiGe-to-dielectric material selectivity a low rate of Ge or SiGe recess formation includes an oxidant and a germanium removal rate enhancer including at least one of a methylpyridine compound and a methylpyridine derivative compound. In some examples, the slurry composition also includes an etching inhibitor. In some cases, the slurry composition may include an abrasive, a surfactant, an organic complexant, a chelating agent, an organic or inorganic acid, an organic or inorganic base, a corrosion inhibitor, or a buffer. The slurry composition may be distributed onto a surface of a polishing pad disposed on a platen that is configured to rotate. Additionally, a workpiece carrier configured to house a substrate may bring the substrate into contact with the rotating polishing pad and thereby polish the substrate utilizing the slurry composition.
Abstract:
The present disclosure relates to a chemical mechanical polishing (CMP) slurry composition that provides for a high metal to dielectric material selectivity along with a low rate of metal recess formation. In some embodiments, the disclosed slurry composition has an oxidant and an etching inhibitor. The oxidant has a compound with one or more oxygen molecules. The etching inhibitor has a nitrogen-oxide compound. The etching inhibitor reduces the rate of metal and dielectric material (e.g., oxide) removal, but does so in a manner that reduces the rate of dielectric material removal by a larger amount, so as to provide the slurry composition with a high metal (e.g., germanium) to dielectric material removal selectivity and with a low rate of metal recess formation.
Abstract:
A CMP slurry composition which provides for a high Ge- or SiGe-to-dielectric material selectivity a low rate of Ge or SiGe recess formation includes an oxidant and a germanium removal rate enhancer including at least one of a methylpyridine compound and a methylpyridine derivative compound. In some examples, the slurry composition also includes an etching inhibitor. In some cases, the slurry composition may include an abrasive, a surfactant, an organic complexant, a chelating agent, an organic or inorganic acid, an organic or inorganic base, a corrosion inhibitor, or a buffer. The slurry composition may be distributed onto a surface of a polishing pad disposed on a platen that is configured to rotate. Additionally, a workpiece carrier configured to house a substrate may bring the substrate into contact with the rotating polishing pad and thereby polish the substrate utilizing the slurry composition.
Abstract:
A CMP slurry composition which provides for a high Ge- or SiGe-to-dielectric material selectivity a low rate of Ge or SiGe recess formation includes an oxidant and a germanium removal rate enhancer including at least one of a methylpyridine compound and a methylpyridine derivative compound. In some examples, the slurry composition also includes an etching inhibitor. In some cases, the slurry composition may include an abrasive, a surfactant, an organic complexant, a chelating agent, an organic or inorganic acid, an organic or inorganic base, a corrosion inhibitor, or a buffer. The slurry composition may be distributed onto a surface of a polishing pad disposed on a platen that is configured to rotate. Additionally, a workpiece carrier configured to house a substrate may bring the substrate into contact with the rotating polishing pad and thereby polish the substrate utilizing the slurry composition.
Abstract:
Provided is a slurry composition including abrasive particles, halogen oxide, and nitroxide compound. The combination of halogen oxide and nitroxide compound has a synergistic effect to remove a substrate containing tungsten and silicon oxide. Moreover, a use of the slurry composition and a polishing method using the slurry composition are provided.
Abstract:
Provided is a slurry composition including abrasive particles, halogen oxide, and nitroxide compound. The combination of halogen oxide and nitroxide compound has a synergistic effect to remove a substrate containing tungsten and silicon oxide. Moreover, a use of the slurry composition and a polishing method using the slurry composition are provided.
Abstract:
The present disclosure relates to a method of performing a chemical mechanical planarization (CMP) process with a high germanium-to-oxide removal selectivity and a low rate of germanium recess formation. The method is performed by providing a semiconductor substrate having a plurality of germanium compound regions including germanium interspersed between a plurality of oxide regions including an oxide. A slurry is then provided onto the semiconductor substrate. The slurry has an oxidant and an etching inhibitor configured to reduce a removal rate of the germanium relative to the oxide. A CMP process is then performed by bringing a chemical mechanical polishing pad in contact with top surfaces of the plurality of germanium compound regions and the plurality of oxide regions.
Abstract:
A cleaning composition is provided. The cleaning composition includes at least one polyamino-polycarboxylic acid or at least one salt thereof, at least one solvent, at least one substituted or non-substituted phenethylamine and water. The solvent is selected from a group consisting of glycols.
Abstract:
A cleaning composition is provided. The cleaning composition includes at least one polyamino-polycarboxylic acid or at least one salt thereof, at least one solvent, at least one substituted or non-substituted phenethylamine and water. The solvent is selected from a group consisting of glycols.